RobotJelly commited on
Commit
ea1e3b9
·
1 Parent(s): fde2555
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -42,17 +42,18 @@ def encode_search_query(search_query, model):
42
  inputs = tokenizer([search_query], padding=True, return_tensors="pt")
43
  #inputs = processor(text=[search_query], images=None, return_tensors="pt", padding=True)
44
  text_features = model.get_text_features(**inputs).detach().numpy()
45
- return np.array(text_features)
46
 
47
  # Find all matched photos
48
  def find_matches(text_features, photo_features, photo_ids, results_count=4):
49
  # Compute the similarity between the search query and each photo using the Cosine similarity
 
50
  similarities = (photo_features @ text_features.T).squeeze(1)
51
  # Sort the photos by their similarity score
52
  best_photo_idx = (-similarities).argsort()
53
  # Return the photo IDs of the best matches
54
  matches = [photo_ids[i] for i in best_photo_idx[:results_count]]
55
- return np.array(matches)
56
 
57
  def image_search(search_text, search_image, option):
58
 
 
42
  inputs = tokenizer([search_query], padding=True, return_tensors="pt")
43
  #inputs = processor(text=[search_query], images=None, return_tensors="pt", padding=True)
44
  text_features = model.get_text_features(**inputs).detach().numpy()
45
+ return text_features
46
 
47
  # Find all matched photos
48
  def find_matches(text_features, photo_features, photo_ids, results_count=4):
49
  # Compute the similarity between the search query and each photo using the Cosine similarity
50
+ text_features = np.array(text_features)
51
  similarities = (photo_features @ text_features.T).squeeze(1)
52
  # Sort the photos by their similarity score
53
  best_photo_idx = (-similarities).argsort()
54
  # Return the photo IDs of the best matches
55
  matches = [photo_ids[i] for i in best_photo_idx[:results_count]]
56
+ return matches
57
 
58
  def image_search(search_text, search_image, option):
59