File size: 4,744 Bytes
8fe7f88 0049d2e c87a61e 762e05d 0049d2e 8fe7f88 0049d2e 762e05d 0049d2e 762e05d 0049d2e 762e05d 0049d2e 8fe7f88 c87a61e 8fe7f88 c87a61e 8fe7f88 983a2d4 8fe7f88 983a2d4 8fe7f88 c87a61e 8fe7f88 c87a61e 8fe7f88 762e05d 8fe7f88 762e05d 8fe7f88 762e05d 8fe7f88 983a2d4 c87a61e 0049d2e c87a61e 0049d2e c87a61e 8fe7f88 762e05d c87a61e 8fe7f88 762e05d 92fbfc8 762e05d 8fe7f88 0049d2e 762e05d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import os
from langchain_openai import ChatOpenAI
from pydantic import BaseModel
from langchain_core.output_parsers import JsonOutputParser
from langchain_core.output_parsers import PydanticOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
from langchain_openai import ChatOpenAI
from pydantic import BaseModel
from typing import List
from dotenv import load_dotenv
from transformers import AutoTokenizer, AutoModelForTokenClassification
import torch
import sys
from tabulate import tabulate
import spacy
import re
import json
from datetime import datetime
from tqdm import tqdm
import time
load_dotenv(".env")
nlp = spacy.load("en_core_web_sm")
def split_text_recursively(text):
if '\n' not in text:
return [text]
parts = text.split('\n', 1)
return [parts[0]] + split_text_recursively(parts[1])
def tokenize_to_sent(path):
print(f"Tokenizing {path} to sentences...")
# Read the file
with open(path, 'r') as file:
text = file.read()
# Sentence tokenization
str_list = split_text_recursively(text)
str_list = [i.strip() for i in str_list]
str_list = list(filter(None, str_list))
count = 0
sents = []
for line in str_list:
doc = nlp(line)
for sent in doc.sents:
sents.append(sent.text)
print(f"Tokenization completed. {len(sents)} sentences found.")
return sents
### LLM-based tag extraction with few-shot learning
model = ChatOpenAI(temperature=0)
class TokenTaggingResult(BaseModel):
tokens: List[str]
tags_knowledge: List[str]
class Results(BaseModel):
results: List[TokenTaggingResult]
model = ChatOpenAI(model_name="gpt-4o", temperature=0.0, api_key=os.getenv('OPENAI_API_KEY'))
tokenizer = AutoTokenizer.from_pretrained("jjzha/jobbert_skill_extraction")
parser = JsonOutputParser(pydantic_object=Results)
# Definitions
skill_definition = """
Skill means the ability to apply knowledge and use know-how to complete tasks and solve problems.
"""
knowledge_definition = """
Knowledge means the outcome of the assimilation of information through learning. Knowledge is the body of facts, principles, theories and practices that is related to a field of work or study.
"""
# Few-shot examples
with open('few-shot.txt', 'r') as file:
few_shot_examples = file.read()
prompt = PromptTemplate(
template="""You are an expert in tagging tokens with knowledge labels. Use the following definitions to tag the input tokens:
Knowledge definition:{knowledge_definition}
Use the examples below to tag the input text into relevant knowledge or skills categories.\n{few_shot_examples}\n{format_instructions}\n{input}\n""",
input_variables=["input"],
partial_variables={"format_instructions": parser.get_format_instructions(),
"few_shot_examples": few_shot_examples,
# "skill_definition": skill_definition,
"knowledge_definition": knowledge_definition},
)
def extract_tags(sents: str, tokenize = True) -> Results:
print("Extracting tags...")
print(f"Tokenizing {len(sents)} sentences...")
start_time = time.time()
if tokenize:
tokens = [tokenizer.tokenize(t) for t in sents]
prompt_and_model = prompt | model
output = prompt_and_model.invoke({"input": tokens})
output = parser.invoke(output)
time_taken = time.time() - start_time
print(f"Tags extracted in {time_taken} seconds.")
return tokens, output
def tag_posting(job_path, output_path):
# Reading & sentence tokenization
sents = tokenize_to_sent(job_path)
# LLM-based tag extraction
tokens, output = extract_tags(sents, tokenize=True)
with open(output_path, "w") as file:
for entry in output['results']:
json.dump(entry, file)
file.write("\n")
def tag_all_today():
date = datetime.today().strftime('%d-%m-%Y')
# date = "04-01-2025"
jobs = os.listdir(f'./job-postings/{date}')
output_path = f'./data/tags-{date}.jsonl'
count = 0
for job in tqdm(jobs, desc="Tagging job postings"):
job_path = f'./job-postings/{date}/{job}'
# Reading & sentence tokenization
sents = tokenize_to_sent(job_path)
# LLM-based tag extraction
tokens, output = extract_tags(sents, tokenize=True)
with open(output_path, "a") as file:
for entry in output['results']:
json.dump(entry, file)
file.write("\n")
count += 1
if count > 2:
break
print(f"Tagging completed. Output saved to {output_path}")
if __name__ == "__main__":
tag_all_today() |