File size: 5,655 Bytes
95c280d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from transformers import AutoTokenizer, BertForTokenClassification, TrainingArguments, Trainer
import torch
from tabulate import tabulate
import wandb


tokenizer = AutoTokenizer.from_pretrained("jjzha/jobbert_knowledge_extraction")
model = BertForTokenClassification.from_pretrained("Robzy/jobbert_knowledge_extraction")

artifact = wandb.Artifact(name="jobbert-knowledge-extraction", type="BERT")

text = 'Experience with Unreal and/or Unity and/or native IOS/Android 3D development and/or Web based 3D engines '

# Tokenize  
inputs = tokenizer(
    text, add_special_tokens=False, return_tensors="pt"
)

# Inference

# with torch.no_grad():
#     output = model(**inputs)

# # Post-process
# predicted_token_class_ids = output.logits.argmax(-1)
# predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
# tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'].squeeze())

# # Display
# table = zip(tokens, predicted_tokens_classes)
# print(tabulate(table, headers=["Token", "Predicted Class"], tablefmt="pretty"))

# Training

from datasets import load_dataset
dataset = load_dataset("json", data_files="data/test-short.json")


# Convert tokens to ids before training

data = [torch.tensor([tokenizer.convert_tokens_to_ids(t) for t in l]) for l in dataset['train']['tokens']]

dataset = dataset.map(
    lambda x: {"input_ids": torch.tensor(tokenizer.convert_tokens_to_ids(x["tokens"]))}
)

# Data preprocessing

from torch.utils.data import DataLoader
import torch.nn as nn
from transformers import DataCollatorForTokenClassification
from typing import List, Tuple

def pad(list_of_lists, pad_value=0):
    max_len = max(len(lst) for lst in list_of_lists)

    # Pad shorter lists with the specified value
    padded_lists = [lst + [pad_value] * (max_len - len(lst)) for lst in list_of_lists]
    attention_masks = [[1] * len(lst) + [0] * (max_len - len(lst)) for lst in list_of_lists]
    
    return torch.tensor(padded_lists), torch.tensor(attention_masks)


def collate_fn(batch: List[List[torch.Tensor]]):

    input_ids, attention_mask = pad(list(map(lambda x: tokenizer.convert_tokens_to_ids(x['tokens']),batch)))
    tags_knowledge, _ = pad([list(map(lambda x: label2id[x],o)) for o in [b['tags_knowledge'] for b in batch]])
    return {"input_ids": input_ids, "tags_knowledge": tags_knowledge, "attention_mask": attention_mask}

# Training settings
batch_size = 32
train_dataloader = DataLoader(dataset['train'], shuffle=True, batch_size=batch_size, collate_fn=collate_fn)
eval_dataloader = DataLoader(dataset['train'], batch_size=batch_size, collate_fn=collate_fn)

from tqdm.auto import tqdm
from torch.optim import AdamW
from transformers import get_scheduler

model.train()
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

IGNORE_INDEX = -100
criterion = nn.CrossEntropyLoss(ignore_index=IGNORE_INDEX)
id2label = model.config.id2label
label2id = model.config.label2id

lr = 5e-5
optimizer = AdamW(model.parameters(), lr=lr)

num_epochs = 3
num_training_steps = num_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(
    name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps
)

model.config.pad_token_id = 0

## Training

from dotenv import load_dotenv
import os
load_dotenv(".env")

from datetime import datetime
current_time = datetime.now()

wandb.login(key=os.getenv('WANDB_API_KEY'))

run = wandb.init(
    # set the wandb project where this run will be logged
    project="in-demand",

    # track hyperparameters and run metadata
    config={
    "learning_rate": lr,
    "architecture": "BERT",
    "epochs": num_epochs,
    "batch_size": batch_size,
    "notes": "Datetime: " + current_time.strftime("%m/%d/%Y, %H:%M:%S")
    }
)

import logging
from datetime import datetime
logging.info("Initiating training")

progress_bar = tqdm(range(num_epochs), desc="Epochs")
for epoch in range(num_epochs):
    logging.info(f"Epoch #{epoch}")
    print(f"Epoch #{epoch}")

    batch_count = 0

    for batch in train_dataloader:

        logging.info(f"Batch #{batch_count} / {len(train_dataloader)}")
        print(f"Batch #{batch_count} / {len(train_dataloader)}")

        tokens = batch['input_ids'].to(device)
        attention_mask = batch['attention_mask'].to(device)
        tags_knowledge = batch['tags_knowledge'].to(device)

        outputs = model(tokens, attention_mask=attention_mask)

        # Batch
        pred = outputs.logits.reshape(-1, model.config.num_labels) # Logits
        label = torch.where(attention_mask==0, torch.tensor(IGNORE_INDEX).to(device), tags_knowledge).reshape(-1) # Labels, padding set to class idx -100

        # Compute accuracy ignoring padding idx
        _, predicted_labels = torch.max(pred, dim=1)
        non_pad_elements = label != IGNORE_INDEX
        correct_predictions = (predicted_labels[non_pad_elements] == label[non_pad_elements]).sum().item()
        total_predictions = non_pad_elements.sum().item()
        accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0

        loss = criterion(pred, label)
        loss.backward()
        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()
        
        wandb.log({"epoch": epoch, "accuracy": accuracy, "loss": loss})

        batch_count += 1

    progress_bar.update(1)


model.push_to_hub("Robzy/jobbert_knowledge_extraction")


# Add the state_dict to the artifact
state_dict = model.state_dict()
with artifact.new_file('model.pth', mode='wb') as f:
    torch.save(state_dict, f)

# Log the artifact to W&B
wandb.log_artifact(artifact)