|
import os |
|
from sentence_transformers import SentenceTransformer |
|
import numpy as np |
|
import umap |
|
import matplotlib.pyplot as plt |
|
import plotly.express as px |
|
from sklearn.cluster import KMeans |
|
import pickle |
|
|
|
|
|
def load_skills_from_date(base_folder, date): |
|
date_folder = os.path.join(base_folder, date) |
|
all_skills = set() |
|
if os.path.exists(date_folder) and os.path.isdir(date_folder): |
|
for file_name in os.listdir(date_folder): |
|
file_path = os.path.join(date_folder, file_name) |
|
if file_name.endswith(".txt"): |
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
all_skills.update(line.strip() for line in f if line.strip()) |
|
return list(all_skills) |
|
|
|
|
|
def generate_embeddings(skills, model_name="paraphrase-MiniLM-L3-v2"): |
|
model = SentenceTransformer(model_name) |
|
embeddings = model.encode(skills, convert_to_numpy=True) |
|
return embeddings |
|
|
|
|
|
def reduce_dimensions(embeddings, n_components=2): |
|
reducer = umap.UMAP(n_components=n_components, random_state=42) |
|
reduced_embeddings = reducer.fit_transform(embeddings) |
|
return reduced_embeddings |
|
|
|
|
|
def visualize_embeddings_2d(reduced_embeddings, skills, output_folder, date): |
|
plt.figure(figsize=(10, 8)) |
|
plt.scatter(reduced_embeddings[:, 0], reduced_embeddings[:, 1], s=50, alpha=0.8) |
|
for i, skill in enumerate(skills): |
|
plt.text(reduced_embeddings[i, 0], reduced_embeddings[i, 1], skill, fontsize=9, alpha=0.75) |
|
plt.title(f"UMAP Projection of Skill Embeddings ({date})") |
|
plt.xlabel("UMAP Dimension 1") |
|
plt.ylabel("UMAP Dimension 2") |
|
|
|
|
|
os.makedirs(output_folder, exist_ok=True) |
|
plot_path = os.path.join(output_folder, f"{date}_2D_projection.png") |
|
plt.savefig(plot_path, format="png", dpi=300) |
|
print(f"2D plot saved at {plot_path}") |
|
|
|
plt.show() |
|
|
|
|
|
def visualize_embeddings_3d(reduced_embeddings, skills, output_folder, date): |
|
fig = px.scatter_3d( |
|
x=reduced_embeddings[:, 0], |
|
y=reduced_embeddings[:, 1], |
|
z=reduced_embeddings[:, 2], |
|
text=skills, |
|
title=f"3D UMAP Projection of Skill Embeddings ({date})" |
|
) |
|
|
|
|
|
os.makedirs(output_folder, exist_ok=True) |
|
plot_path = os.path.join(output_folder, f"{date}_3D_projection.html") |
|
fig.write_html(plot_path) |
|
print(f"3D plot saved at {plot_path}") |
|
|
|
fig.show() |
|
|
|
def visualize3D(reduced_embeddings, labels, skills, n_clusters, output_folder, date): |
|
|
|
fig = px.scatter_3d( |
|
x=reduced_embeddings[:, 0], |
|
y=reduced_embeddings[:, 1], |
|
z=reduced_embeddings[:, 2], |
|
color=labels, |
|
text=skills, |
|
title=f"KMeans Clustering with {n_clusters} Clusters ({date})" |
|
) |
|
|
|
|
|
os.makedirs(output_folder, exist_ok=True) |
|
plot_path = os.path.join(output_folder, f"{date}_3D_clustering.html") |
|
fig.write_html(plot_path) |
|
print(f"3D clustered plot saved at {plot_path}") |
|
|
|
|
|
return fig |
|
|
|
|
|
base_folder = "./tags" |
|
output_folder = "./plots" |
|
specific_date = "03-01-2024" |
|
|
|
|
|
n_clusters = 5 |
|
|
|
|
|
base_folder = "./tags" |
|
output_folder = "./plots" |
|
vector_store = "./vectorstore" |
|
specific_date = "03-01-2024" |
|
n_clusters = 5 |
|
|
|
|
|
skills = load_skills_from_date(base_folder, specific_date) |
|
if not skills: |
|
print(f"No skills found for the date: {specific_date}") |
|
else: |
|
print(f"Loaded {len(skills)} unique skills for the date: {specific_date}") |
|
|
|
|
|
embeddings = generate_embeddings(skills) |
|
|
|
|
|
|
|
|
|
|
|
|
|
reduced_embeddings_3d = reduce_dimensions(embeddings, n_components=3) |
|
kmeans = KMeans(n_clusters=n_clusters, random_state=42) |
|
labels = kmeans.fit_predict(reduced_embeddings_3d) |
|
visualize3D(reduced_embeddings_3d, labels, skills, n_clusters, output_folder, specific_date) |
|
|
|
|
|
np.save(os.path.join(vector_store, f"{specific_date}_embeddings.npy"), reduced_embeddings_3d) |
|
with open(os.path.join(vector_store, f"{specific_date}_metadata.pkl"), 'wb') as f: |
|
pickle.dump({'labels': labels, 'skills': skills}, f) |
|
|
|
|
|
|
|
|