clean up
Browse files- README.md +1 -1
- create_sample_skills.py +0 -38
- demo-app.py +0 -6
- demo.py +0 -39
- few-shot.txt +0 -24
- header.png → images/header.png +0 -0
- in-demand_flow.png → images/in-demand_flow.png +0 -0
README.md
CHANGED
@@ -27,7 +27,7 @@ This projects aims to monitor in-demand skills for machine learning roles. Skill
|
|
27 |
- **Weights & Biases**: Used for model training monitoring as well as model storing.
|
28 |
- **OpenAI API**: Used to extract ground-truth from job descriptions by leveraging multi-shot learning and prompt engineering.
|
29 |
|
30 |
-
|
31 |
# High-Level Overview
|
32 |
|
33 |
## Models
|
|
|
27 |
- **Weights & Biases**: Used for model training monitoring as well as model storing.
|
28 |
- **OpenAI API**: Used to extract ground-truth from job descriptions by leveraging multi-shot learning and prompt engineering.
|
29 |
|
30 |
+
|
31 |
# High-Level Overview
|
32 |
|
33 |
## Models
|
create_sample_skills.py
DELETED
@@ -1,38 +0,0 @@
|
|
1 |
-
# Generating sample folder structure and files with multiple skills per file
|
2 |
-
|
3 |
-
import os
|
4 |
-
|
5 |
-
# Base folder for the structure
|
6 |
-
base_folder = "tags"
|
7 |
-
|
8 |
-
# Sample data: dates and skills for each date
|
9 |
-
sample_dates = ["03-01-2024", "04-01-2024", "05-01-2024"]
|
10 |
-
sample_skills = {
|
11 |
-
"03-01-2024": [
|
12 |
-
["Python", "Machine Learning", "Data Analysis"],
|
13 |
-
["Python", "Deep Learning"],
|
14 |
-
["Data Science", "AI"]
|
15 |
-
],
|
16 |
-
"04-01-2024": [
|
17 |
-
["Python", "AI", "Data Analysis"],
|
18 |
-
["Deep Learning", "Machine Learning"],
|
19 |
-
["AI", "Data Engineering"]
|
20 |
-
],
|
21 |
-
"05-01-2024": [
|
22 |
-
["AI", "Machine Learning", "Python"],
|
23 |
-
["Data Science", "Deep Learning"],
|
24 |
-
["Python", "AI", "Cloud Computing"]
|
25 |
-
]
|
26 |
-
}
|
27 |
-
|
28 |
-
# Create the folder structure and files
|
29 |
-
for date in sample_dates:
|
30 |
-
date_folder = os.path.join(base_folder, date)
|
31 |
-
os.makedirs(date_folder, exist_ok=True)
|
32 |
-
|
33 |
-
for i, skills in enumerate(sample_skills[date], start=1):
|
34 |
-
file_path = os.path.join(date_folder, f"{i}.txt")
|
35 |
-
with open(file_path, "w", encoding="utf-8") as f:
|
36 |
-
f.write("\n".join(skills))
|
37 |
-
|
38 |
-
print(f"Sample files with multiple skills per file have been generated in the '{base_folder}' folder.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo-app.py
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
import plotly.express as px
|
2 |
-
import numpy as np
|
3 |
-
|
4 |
-
X = np.random.randint(0, 10, (10, 3))
|
5 |
-
fig = px.scatter_3d(x=X[:,0], y=X[:, 1], z=X[:, 2])
|
6 |
-
fig.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo.py
DELETED
@@ -1,39 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import plotly.graph_objects as go
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
# Function to create a 3D plot
|
6 |
-
def create_3d_plot(x_range, y_range):
|
7 |
-
# Generate 3D data
|
8 |
-
x = np.linspace(-x_range, x_range, 100)
|
9 |
-
y = np.linspace(-y_range, y_range, 100)
|
10 |
-
x, y = np.meshgrid(x, y)
|
11 |
-
z = np.sin(np.sqrt(x**2 + y**2))
|
12 |
-
|
13 |
-
# Create a 3D surface plot
|
14 |
-
fig = go.Figure(data=[go.Surface(z=z, x=x, y=y)])
|
15 |
-
fig.update_layout(
|
16 |
-
scene=dict(
|
17 |
-
xaxis_title='X Axis',
|
18 |
-
yaxis_title='Y Axis',
|
19 |
-
zaxis_title='Z Axis'
|
20 |
-
),
|
21 |
-
margin=dict(l=0, r=0, b=0, t=0),
|
22 |
-
height=1000
|
23 |
-
)
|
24 |
-
return fig
|
25 |
-
|
26 |
-
# Gradio interface
|
27 |
-
with gr.Blocks() as demo:
|
28 |
-
gr.Markdown("## Interactive 3D Plot with Gradio and Plotly")
|
29 |
-
with gr.Row():
|
30 |
-
x_slider = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="X Range")
|
31 |
-
y_slider = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Y Range")
|
32 |
-
plot_output = gr.Plot(label="3D Surface Plot")
|
33 |
-
|
34 |
-
# Update the plot on slider change
|
35 |
-
x_slider.change(create_3d_plot, inputs=[x_slider, y_slider], outputs=plot_output)
|
36 |
-
y_slider.change(create_3d_plot, inputs=[x_slider, y_slider], outputs=plot_output)
|
37 |
-
|
38 |
-
# Launch the app
|
39 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
few-shot.txt
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
Example #96
|
2 |
-
Tokens: ['Public']
|
3 |
-
Skill Labels: ['O']
|
4 |
-
Knowledge Labels: ['O']
|
5 |
-
|
6 |
-
Example #97
|
7 |
-
Tokens: ['Technologies']
|
8 |
-
Skill Labels: ['O']
|
9 |
-
Knowledge Labels: ['O']
|
10 |
-
|
11 |
-
Example #98
|
12 |
-
Tokens: ['cloud', 'java', 'amazon-web-services']
|
13 |
-
Skill Labels: ['O', 'O', 'O']
|
14 |
-
Knowledge Labels: ['B', 'B', 'B']
|
15 |
-
|
16 |
-
Example #99
|
17 |
-
Tokens: ['Job', 'description']
|
18 |
-
Skill Labels: ['O', 'O']
|
19 |
-
Knowledge Labels: ['O', 'O']
|
20 |
-
|
21 |
-
Example #100
|
22 |
-
Tokens: ['As', 'a', 'member', 'of', 'our', 'Software', 'Engineering', 'Group', 'we', 'look', 'first', 'and', 'foremost', 'for', 'people', 'who', 'are', 'passionate', 'about', 'solving', 'business', 'problems', 'through', 'innovation', 'and', 'engineering', 'practices', '.']
|
23 |
-
Skill Labels: ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'O']
|
24 |
-
Knowledge Labels: ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
header.png → images/header.png
RENAMED
File without changes
|
in-demand_flow.png → images/in-demand_flow.png
RENAMED
File without changes
|