Aqsa-K
commited on
Commit
·
f8da2f0
1
Parent(s):
9c3e55b
embedding and graphs added
Browse files- create_sample_skills.py +38 -0
- embedding_gen.py +89 -0
- plots/AI_trend.png +0 -0
- plots/Deep Learning_trend.png +0 -0
- plots/Python_trend.png +0 -0
- trend_graph.py +67 -0
create_sample_skills.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generating sample folder structure and files with multiple skills per file
|
2 |
+
|
3 |
+
import os
|
4 |
+
|
5 |
+
# Base folder for the structure
|
6 |
+
base_folder = "tags"
|
7 |
+
|
8 |
+
# Sample data: dates and skills for each date
|
9 |
+
sample_dates = ["03-01-2024", "04-01-2024", "05-01-2024"]
|
10 |
+
sample_skills = {
|
11 |
+
"03-01-2024": [
|
12 |
+
["Python", "Machine Learning", "Data Analysis"],
|
13 |
+
["Python", "Deep Learning"],
|
14 |
+
["Data Science", "AI"]
|
15 |
+
],
|
16 |
+
"04-01-2024": [
|
17 |
+
["Python", "AI", "Data Analysis"],
|
18 |
+
["Deep Learning", "Machine Learning"],
|
19 |
+
["AI", "Data Engineering"]
|
20 |
+
],
|
21 |
+
"05-01-2024": [
|
22 |
+
["AI", "Machine Learning", "Python"],
|
23 |
+
["Data Science", "Deep Learning"],
|
24 |
+
["Python", "AI", "Cloud Computing"]
|
25 |
+
]
|
26 |
+
}
|
27 |
+
|
28 |
+
# Create the folder structure and files
|
29 |
+
for date in sample_dates:
|
30 |
+
date_folder = os.path.join(base_folder, date)
|
31 |
+
os.makedirs(date_folder, exist_ok=True)
|
32 |
+
|
33 |
+
for i, skills in enumerate(sample_skills[date], start=1):
|
34 |
+
file_path = os.path.join(date_folder, f"{i}.txt")
|
35 |
+
with open(file_path, "w", encoding="utf-8") as f:
|
36 |
+
f.write("\n".join(skills))
|
37 |
+
|
38 |
+
print(f"Sample files with multiple skills per file have been generated in the '{base_folder}' folder.")
|
embedding_gen.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
import numpy as np
|
4 |
+
import umap
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import plotly.express as px
|
7 |
+
|
8 |
+
# Step 1: Load skills from all files in a specific date folder
|
9 |
+
def load_skills_from_date(base_folder, date):
|
10 |
+
date_folder = os.path.join(base_folder, date)
|
11 |
+
all_skills = set() # To ensure unique skills
|
12 |
+
if os.path.exists(date_folder) and os.path.isdir(date_folder):
|
13 |
+
for file_name in os.listdir(date_folder):
|
14 |
+
file_path = os.path.join(date_folder, file_name)
|
15 |
+
if file_name.endswith(".txt"):
|
16 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
17 |
+
all_skills.update(line.strip() for line in f if line.strip())
|
18 |
+
return list(all_skills)
|
19 |
+
|
20 |
+
# Step 2: Generate embeddings using a pretrained model
|
21 |
+
def generate_embeddings(skills, model_name="paraphrase-MiniLM-L3-v2"):
|
22 |
+
model = SentenceTransformer(model_name)
|
23 |
+
embeddings = model.encode(skills, convert_to_numpy=True)
|
24 |
+
return embeddings
|
25 |
+
|
26 |
+
# Step 3: Reduce dimensionality using UMAP
|
27 |
+
def reduce_dimensions(embeddings, n_components=2):
|
28 |
+
reducer = umap.UMAP(n_components=n_components, random_state=42)
|
29 |
+
reduced_embeddings = reducer.fit_transform(embeddings)
|
30 |
+
return reduced_embeddings
|
31 |
+
|
32 |
+
# Step 4: Visualize the reduced embeddings (2D)
|
33 |
+
def visualize_embeddings_2d(reduced_embeddings, skills, output_folder, date):
|
34 |
+
plt.figure(figsize=(10, 8))
|
35 |
+
plt.scatter(reduced_embeddings[:, 0], reduced_embeddings[:, 1], s=50, alpha=0.8)
|
36 |
+
for i, skill in enumerate(skills):
|
37 |
+
plt.text(reduced_embeddings[i, 0], reduced_embeddings[i, 1], skill, fontsize=9, alpha=0.75)
|
38 |
+
plt.title(f"UMAP Projection of Skill Embeddings ({date})")
|
39 |
+
plt.xlabel("UMAP Dimension 1")
|
40 |
+
plt.ylabel("UMAP Dimension 2")
|
41 |
+
|
42 |
+
# Save the plot
|
43 |
+
os.makedirs(output_folder, exist_ok=True)
|
44 |
+
plot_path = os.path.join(output_folder, f"{date}_2D_projection.png")
|
45 |
+
plt.savefig(plot_path, format="png", dpi=300)
|
46 |
+
print(f"2D plot saved at {plot_path}")
|
47 |
+
|
48 |
+
plt.show()
|
49 |
+
|
50 |
+
# Step 5: Visualize the reduced embeddings (3D)
|
51 |
+
def visualize_embeddings_3d(reduced_embeddings, skills, output_folder, date):
|
52 |
+
fig = px.scatter_3d(
|
53 |
+
x=reduced_embeddings[:, 0],
|
54 |
+
y=reduced_embeddings[:, 1],
|
55 |
+
z=reduced_embeddings[:, 2],
|
56 |
+
text=skills,
|
57 |
+
title=f"3D UMAP Projection of Skill Embeddings ({date})"
|
58 |
+
)
|
59 |
+
|
60 |
+
# Save the plot
|
61 |
+
os.makedirs(output_folder, exist_ok=True)
|
62 |
+
plot_path = os.path.join(output_folder, f"{date}_3D_projection.html")
|
63 |
+
fig.write_html(plot_path)
|
64 |
+
print(f"3D plot saved at {plot_path}")
|
65 |
+
|
66 |
+
fig.show()
|
67 |
+
|
68 |
+
# Main execution
|
69 |
+
base_folder = "./tags"
|
70 |
+
output_folder = "./plots"
|
71 |
+
specific_date = "03-01-2024" # Example date folder to process
|
72 |
+
|
73 |
+
# Load skills from the specified date folder
|
74 |
+
skills = load_skills_from_date(base_folder, specific_date)
|
75 |
+
if not skills:
|
76 |
+
print(f"No skills found for the date: {specific_date}")
|
77 |
+
else:
|
78 |
+
print(f"Loaded {len(skills)} unique skills for the date: {specific_date}")
|
79 |
+
|
80 |
+
# Generate embeddings
|
81 |
+
embeddings = generate_embeddings(skills)
|
82 |
+
|
83 |
+
# Reduce dimensions to 2D and visualize
|
84 |
+
reduced_embeddings_2d = reduce_dimensions(embeddings, n_components=2)
|
85 |
+
visualize_embeddings_2d(reduced_embeddings_2d, skills, output_folder, specific_date)
|
86 |
+
|
87 |
+
# Reduce dimensions to 3D and visualize
|
88 |
+
reduced_embeddings_3d = reduce_dimensions(embeddings, n_components=3)
|
89 |
+
visualize_embeddings_3d(reduced_embeddings_3d, skills, output_folder, specific_date)
|
plots/AI_trend.png
ADDED
![]() |
plots/Deep Learning_trend.png
ADDED
![]() |
plots/Python_trend.png
ADDED
![]() |
trend_graph.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from collections import Counter
|
5 |
+
|
6 |
+
# Path to the folder with date-wise subfolders
|
7 |
+
base_folder = "./tags"
|
8 |
+
|
9 |
+
# Directory to save the plots
|
10 |
+
output_folder = "./plots"
|
11 |
+
os.makedirs(output_folder, exist_ok=True)
|
12 |
+
|
13 |
+
# Step 1: Initialize data structure to store skill counts
|
14 |
+
date_skill_counts = {}
|
15 |
+
|
16 |
+
# Step 2: Loop through the date folders
|
17 |
+
for date_folder in sorted(os.listdir(base_folder)):
|
18 |
+
folder_path = os.path.join(base_folder, date_folder)
|
19 |
+
if os.path.isdir(folder_path):
|
20 |
+
# Initialize skill counter for the date
|
21 |
+
skill_counter = Counter()
|
22 |
+
|
23 |
+
# Loop through all files in the date folder
|
24 |
+
for file_name in os.listdir(folder_path):
|
25 |
+
file_path = os.path.join(folder_path, file_name)
|
26 |
+
if file_name.endswith(".txt"):
|
27 |
+
with open(file_path, "r", encoding="utf-8") as file:
|
28 |
+
# Read skills from the file
|
29 |
+
skills = file.read().strip().splitlines()
|
30 |
+
skill_counter.update(skills)
|
31 |
+
|
32 |
+
# Save counts for the date
|
33 |
+
date_skill_counts[date_folder] = skill_counter
|
34 |
+
|
35 |
+
# Step 3: Aggregate the data into a DataFrame
|
36 |
+
all_dates = sorted(date_skill_counts.keys())
|
37 |
+
all_skills = set(skill for counts in date_skill_counts.values() for skill in counts)
|
38 |
+
data = {skill: [date_skill_counts[date].get(skill, 0) for date in all_dates] for skill in all_skills}
|
39 |
+
df = pd.DataFrame(data, index=all_dates)
|
40 |
+
|
41 |
+
print(df)
|
42 |
+
|
43 |
+
# Step 4: Identify the top 3 skills
|
44 |
+
total_counts = df.sum(axis=0)
|
45 |
+
top_skills = total_counts.nlargest(3).index
|
46 |
+
|
47 |
+
# Step 5: Plot and save separate graphs for the top 3 skills
|
48 |
+
for skill in top_skills:
|
49 |
+
plt.figure(figsize=(8, 5))
|
50 |
+
plt.plot(df.index, df[skill], marker="o", label=skill)
|
51 |
+
|
52 |
+
# Add labels and legend
|
53 |
+
plt.title(f"Trend of {skill} Over Time")
|
54 |
+
plt.xlabel("Date")
|
55 |
+
plt.ylabel("Count")
|
56 |
+
plt.xticks(rotation=45)
|
57 |
+
plt.legend(title="Skill")
|
58 |
+
plt.grid()
|
59 |
+
plt.tight_layout()
|
60 |
+
|
61 |
+
# Save the plot
|
62 |
+
plot_path = os.path.join(output_folder, f"{skill}_trend.png")
|
63 |
+
plt.savefig(plot_path, format="png", dpi=300)
|
64 |
+
print(f"Saved plot for {skill} at {plot_path}")
|
65 |
+
|
66 |
+
# Show the plot
|
67 |
+
plt.show()
|