onit-text-analysis / src /utils /extract_data.py
Michela
Upload data and app
e62e0c5
"""
This script creates a CSV with all data to be indexed on the Marqo server.
Code by Michela Vignoli. Parts of this code were developed with assistance from GPT-4 and GPT-3 (free version).
"""
import os
import csv
import chardet
from tqdm import tqdm
# Helper function to get all file paths with a specific extension in a folder
def collect_files(folder, extension=".txt"):
file_paths = []
for root, _, files in os.walk(folder):
for file in files:
if file.endswith(extension):
file_paths.append(os.path.join(root, file))
return file_paths
# Function to process files and extract their text
def process_file(file_path):
try:
# Detect encoding
with open(file_path, 'rb') as f:
result = chardet.detect(f.read())
encoding = result['encoding']
# Read the file
with open(file_path, 'r', encoding=encoding) as f:
return f.read()
except Exception as e:
print(f"Error processing {file_path}: {e}")
return None
# Combine data from clean, orig, and prep folders
def combine_data(clean_files, orig_files, prep_files):
combined_data = []
# Index files by (barcode, page) for matching
def index_files(files):
indexed = {}
for file in files:
barcode = os.path.basename(os.path.dirname(file))[:10]
page = os.path.basename(file)[:5]
indexed[(barcode, page)] = file
return indexed
clean_index = index_files(clean_files)
orig_index = index_files(orig_files)
prep_index = index_files(prep_files)
# Process files and combine data
for key in tqdm(clean_index.keys(), desc="Combining data", unit="file"):
clean_file = clean_index.get(key)
orig_file = orig_index.get(key)
prep_file = prep_index.get(key)
# Extract text
text_clean = process_file(clean_file) if clean_file else None
text_orig = process_file(orig_file) if orig_file else None
text_prep = process_file(prep_file) if prep_file else None
# Add combined data row
barcode, page = key
page_url = page[:5].zfill(8)
iiif_link = f"https://iiif.onb.ac.at/images/ABO/{barcode}/{page_url}/full/full/0/native.jpg"
combined_data.append({
"barcode": barcode,
"page": page,
"iiif_link": iiif_link,
"text_clean": text_clean,
"text_orig": text_orig,
"text_prep": text_prep,
})
return combined_data
# Lists of folders to process
clean_folders = [
'source/path/DHd 2025 dataset/Sonnini Z166069305/Z166069305_clean/',
]
orig_folders = [
"source/path/02-texts/D19/Z166069305",
]
prep_folders = [
'source/path/DHd 2025 dataset/Sonnini Z166069305/Z166069305_clean_preprocessed/',
]
# Collect file paths
clean_files = [file for folder in clean_folders for file in collect_files(folder)]
orig_files = [file for folder in orig_folders for file in collect_files(folder)]
prep_files = [file for folder in prep_folders for file in collect_files(folder)]
# Combine data from all folders
all_data = combine_data(clean_files, orig_files, prep_files)
# Specify the file path and create the directory if it does not exist
csv_file = 'output/path/DHd_index.csv'
os.makedirs(os.path.dirname(csv_file), exist_ok=True)
# Write data to CSV file
with open(csv_file, mode='w', newline='', encoding='utf-8') as file:
writer = csv.DictWriter(file, fieldnames=["barcode", "page", "iiif_link", "text_clean", "text_orig", "text_prep"])
writer.writeheader()
writer.writerows(all_data)
#### IMPORTANT ####
#### Data Cleaning Needed after storing the file ####
"""
# Clean data
# Specify columns to check and update
columns_to_check = ["text_clean", "text_prep"]
# Check for rows where any of the columns contain "status code" or "empty page"
rows_to_update = index_DHd[columns_to_check].applymap(lambda x: any(keyword in str(x) for keyword in ["status code", "empty page"])).any(axis=1)
# Replace content in the specified columns for the identified rows
index_DHd.loc[rows_to_update, columns_to_check] = "<empty page>
# Remove artifacts from the LLM generation process
index_DHd['text_prep'] = index_DHd['text_prep'].str.strip("Here is the corrected text:")
""""
print(f"Data from all folders has been written to {csv_file}")