Haircutsuggest / app.py
Rogerjs's picture
Update app.py
6c56519 verified
import gradio as gr
from PIL import Image, ImageDraw
import numpy as np
import torch
from transformers import YolosImageProcessor, YolosForObjectDetection
import mediapipe as mp
import math
import os # For potential future environment variable use
# --- Model Initialization ---
# 1. Face Detection Model
print("Attempting to load face detection model...")
PRIMARY_DETECTION_MODEL_NAME = "hustvl/yolos-face"
FALLBACK_DETECTION_MODEL_NAME = "hustvl/yolos-tiny" # Detects 'person'
FACE_LABEL_ID = -1 # Will be set based on which model loads
face_image_processor = None
face_detection_model = None
try:
print(f"Trying primary model: {PRIMARY_DETECTION_MODEL_NAME}")
face_image_processor = YolosImageProcessor.from_pretrained(PRIMARY_DETECTION_MODEL_NAME)
face_detection_model = YolosForObjectDetection.from_pretrained(PRIMARY_DETECTION_MODEL_NAME)
# For hustvl/yolos-face, the label for "face" is 0.
FACE_LABEL_ID = 0 # Corresponds to "face"
print(f"Successfully loaded primary face detection model: {PRIMARY_DETECTION_MODEL_NAME} (label 'face': {FACE_LABEL_ID})")
except Exception as e:
print(f"Error loading primary model {PRIMARY_DETECTION_MODEL_NAME}: {e}")
print(f"Attempting to load fallback model: {FALLBACK_DETECTION_MODEL_NAME}")
try:
face_image_processor = YolosImageProcessor.from_pretrained(FALLBACK_DETECTION_MODEL_NAME)
face_detection_model = YolosForObjectDetection.from_pretrained(FALLBACK_DETECTION_MODEL_NAME)
# For hustvl/yolos-tiny (trained on COCO), 'person' is label 0.
FACE_LABEL_ID = 0 # We will use 'person' (label 0) as a proxy for face
print(f"Successfully loaded fallback detection model: {FALLBACK_DETECTION_MODEL_NAME} (using label 'person': {FACE_LABEL_ID})")
except Exception as e2:
print(f"Error loading fallback model {FALLBACK_DETECTION_MODEL_NAME}: {e2}")
print("!!! CRITICAL: Face detection model could not be loaded. The app might not function correctly. !!!")
# face_image_processor and face_detection_model will remain None
# 2. Facial Landmark Model (MediaPipe Face Mesh)
print("Initializing MediaPipe Face Mesh...")
mp_face_mesh = None
face_mesh_detector = None
mp_drawing = None
drawing_spec = None
try:
mp_face_mesh = mp.solutions.face_mesh
face_mesh_detector = mp_face_mesh.FaceMesh(
static_image_mode=True,
max_num_faces=1,
refine_landmarks=True,
min_detection_confidence=0.5)
mp_drawing = mp.solutions.drawing_utils # For drawing landmarks
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1, color=(0,255,0)) # Green dots
print("MediaPipe Face Mesh initialized successfully.")
except Exception as e:
print(f"Error initializing MediaPipe Face Mesh: {e}")
# Variables will remain None
# --- Helper Functions ---
def detect_face_local(image_pil):
if not face_image_processor or not face_detection_model or FACE_LABEL_ID == -1:
return None, "Face detection model not loaded or configured properly."
print(f"Detecting face with FACE_LABEL_ID: {FACE_LABEL_ID}")
detection_threshold = 0.4 # <<-- TRY LOWERING THIS (e.g., 0.5, 0.4, 0.3)
print(f"Using detection threshold: {detection_threshold}")
try:
inputs = face_image_processor(images=image_pil, return_tensors="pt")
with torch.no_grad():
outputs = face_detection_model(**inputs)
target_sizes = torch.tensor([image_pil.size[::-1]])
# Setting a lower threshold for post-processing here
results = face_image_processor.post_process_object_detection(
outputs, threshold=detection_threshold, target_sizes=target_sizes
)[0]
best_box = None
max_score = 0 # We will still pick the best one above the (now lower) threshold
print(f"Detection results: {len(results['scores'])} detections before filtering by label.")
detected_items_for_label = []
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
current_score = score.item()
current_label = label.item()
print(f" - Detected item: Label {current_label}, Score {current_score:.2f}")
if current_label == FACE_LABEL_ID:
detected_items_for_label.append({'score': current_score, 'box': box.tolist()})
if current_score > max_score:
max_score = current_score
best_box = box.tolist()
print(f"Found {len(detected_items_for_label)} items matching FACE_LABEL_ID {FACE_LABEL_ID} with scores: {[item['score'] for item in detected_items_for_label]}")
if best_box:
print(f"Selected best box with score: {max_score:.2f}")
# Add a small padding to the bounding box
padding_w = (best_box[2] - best_box[0]) * 0.15 # 15% padding width
padding_h = (best_box[3] - best_box[1]) * 0.15 # 15% padding height
xmin = max(0, best_box[0] - padding_w)
ymin = max(0, best_box[1] - padding_h)
xmax = min(image_pil.width, best_box[2] + padding_w)
ymax = min(image_pil.height, best_box[3] + padding_h)
# Ensure cropped dimensions are valid
if xmax <= xmin or ymax <= ymin:
print(f"Warning: Invalid crop dimensions after padding. Original box: {best_box}. Padded: ({xmin},{ymin},{xmax},{ymax})")
# Fallback to original box if padding made it invalid
xmin, ymin, xmax, ymax = best_box[0], best_box[1], best_box[2], best_box[3]
if xmax <= xmin or ymax <= ymin: # If original box itself is invalid
return None, "Detected box has invalid dimensions."
cropped_image = image_pil.crop((xmin, ymin, xmax, ymax))
return cropped_image, None
else:
if len(detected_items_for_label) > 0:
return None, f"Faces detected but scores too low (max score: {max_score:.2f} with threshold {detection_threshold}). Try a clearer image or different pose."
else:
return None, f"No face/person detected with sufficient confidence (threshold {detection_threshold}). Ensure face is clear and well-lit."
except Exception as e:
print(f"Error during local face detection: {e}")
import traceback
traceback.print_exc() # Print full traceback for debugging
return None, f"Error during face detection: {str(e)}"
def get_landmarks_and_draw(image_pil):
if not face_mesh_detector or not mp_drawing or not drawing_spec:
return None, "MediaPipe Face Mesh not initialized for landmarks.", image_pil
image_rgb_mp = np.array(image_pil.convert('RGB')) # MediaPipe prefers RGB
results = face_mesh_detector.process(image_rgb_mp)
annotated_image_pil = image_pil.copy()
if results.multi_face_landmarks:
landmarks = results.multi_face_landmarks[0]
image_np_to_draw = np.array(annotated_image_pil)
# Draw landmarks using MediaPipe's utility
mp_drawing.draw_landmarks(
image=image_np_to_draw,
landmark_list=landmarks,
connections=mp_face_mesh.FACEMESH_TESSELATION, # Shows mesh
landmark_drawing_spec=drawing_spec,
connection_drawing_spec=drawing_spec)
annotated_image_pil = Image.fromarray(image_np_to_draw)
return landmarks, None, annotated_image_pil
else:
return None, "Could not detect facial landmarks.", annotated_image_pil
def _distance_2d_normalized(p1, p2):
return math.sqrt((p1.x - p2.x)**2 + (p1.y - p2.y)**2)
def estimate_face_shape_from_landmarks_v2(landmarks, img_width, img_height):
if not landmarks:
return "Unknown", {}
p_forehead_top_center = landmarks.landmark[10]
p_chin_bottom = landmarks.landmark[152]
face_height = abs(p_forehead_top_center.y - p_chin_bottom.y)
p_cheek_left = landmarks.landmark[234]
p_cheek_right = landmarks.landmark[454]
face_width_cheeks = abs(p_cheek_left.x - p_cheek_right.x)
p_forehead_L = landmarks.landmark[70]
p_forehead_R = landmarks.landmark[300]
forehead_width = abs(p_forehead_L.x - p_forehead_R.x)
p_jaw_angle_L = landmarks.landmark[172]
p_jaw_angle_R = landmarks.landmark[397]
jaw_width_gonial = abs(p_jaw_angle_L.x - p_jaw_angle_R.x)
p_chin_width_L = landmarks.landmark[143]
p_chin_width_R = landmarks.landmark[372]
chin_width = abs(p_chin_width_L.x - p_chin_width_R.x)
measurements = {
"face_height_norm": face_height,
"face_width_cheeks_norm": face_width_cheeks,
"forehead_width_norm": forehead_width,
"jaw_width_gonial_norm": jaw_width_gonial,
"chin_width_norm": chin_width
}
# print("Normalized Measurements:", {k: round(v,3) for k,v in measurements.items()})
if face_width_cheeks == 0: return "Unknown (div zero)", measurements
facial_index = face_height / face_width_cheeks if face_width_cheeks > 0 else 0
forehead_to_cheek_ratio = forehead_width / face_width_cheeks
jaw_to_cheek_ratio = jaw_width_gonial / face_width_cheeks
shape = "Unknown"
if facial_index > 1.05: # Longer than wide
if forehead_to_cheek_ratio > 0.85 and jaw_to_cheek_ratio > 0.85 and abs(forehead_width - jaw_width_gonial) < forehead_width * 0.20 :
shape = "Long/Oblong" # All widths relatively similar but face is long
elif forehead_width > jaw_width_gonial and chin_width < jaw_width_gonial * 0.85:
shape = "Heart/Inverted Triangle"
else:
shape = "Long"
elif facial_index < 0.95: # Wider than long, or close to equal width/height and not distinctly Diamond/Heart
if forehead_to_cheek_ratio > 0.85 and jaw_to_cheek_ratio > 0.85 and abs(forehead_width - jaw_width_gonial) < forehead_width * 0.20:
if jaw_width_gonial > face_width_cheeks * 0.88: # Strong jaw compared to cheeks
shape = "Square"
else:
shape = "Round"
else: # If widths are not all similar, default to Round for wider faces
shape = "Round"
else: # facial_index between 0.95 and 1.05 (balanced height/width)
if face_width_cheeks > forehead_width and face_width_cheeks > jaw_width_gonial and chin_width < jaw_width_gonial * 0.85:
shape = "Diamond"
elif forehead_width > jaw_width_gonial and face_width_cheeks > jaw_width_gonial and chin_width < jaw_width_gonial * 0.8:
if 0.80 < forehead_to_cheek_ratio < 1.0 and jaw_to_cheek_ratio < forehead_to_cheek_ratio * 0.95:
shape = "Oval"
else:
shape = "Heart"
elif abs(forehead_width - jaw_width_gonial) < forehead_width * 0.15 and abs(face_width_cheeks - forehead_width) < forehead_width * 0.15 :
shape = "Square"
else:
shape = "Oval" # General fallback for balanced faces not matching other criteria
if shape == "Unknown": # If no specific rules matched strongly
if 0.95 <= facial_index <= 1.05 and forehead_to_cheek_ratio < 1.0 and jaw_to_cheek_ratio < forehead_to_cheek_ratio:
shape = "Oval (Default)"
elif facial_index < 0.95:
shape = "Round (Default)"
else:
shape = "Long (Default)"
return shape, measurements
def get_side_profile_assessment(side_image_pil):
if not side_image_pil:
return "Not provided", None
# Convert Gradio Image (numpy array) to PIL Image if it's not already
if isinstance(side_image_pil, np.ndarray):
side_image_pil = Image.fromarray(side_image_pil)
side_image_pil = side_image_pil.convert("RGB")
landmarks, error_msg_lm, _ = get_landmarks_and_draw(side_image_pil)
if error_msg_lm or not landmarks:
return f"Could not analyze ({error_msg_lm or 'no landmarks'})", None
# Basic assessment placeholder
# E.g. Chin prominence (landmark 152's x vs jaw angle 172's x)
# This is highly dependent on consistent side view and requires careful calibration
# For now, just acknowledge landmarks were found
return "Analyzed (basic landmark detection)", landmarks
def get_hairstyle_suggestions_v2(face_shape, side_profile_info=""):
base_suggestions = {
"Oval": {"hair": ["Most styles work. Consider layers, textured crops, or side parts."], "beard": ["Versatile. Classic full beard, short boxed, or stubble."]},
"Oval (Default)": {"hair": ["Versatile. Try layers or a textured crop. Side parts can be flattering."], "beard": ["Well-groomed stubble or a short boxed beard."]},
"Long/Oblong": {"hair": ["Add width: Curls, waves, shoulder-length with layers. Bangs (blunt/side-swept). Avoid height."], "beard": ["Fuller on cheeks: full beard, mutton chops. Avoid long, pointy beards."]},
"Long": {"hair": ["Add width: Curls, waves, shoulder-length with layers. Bangs (blunt/side-swept). Avoid height."], "beard": ["Fuller on cheeks: full beard, mutton chops. Avoid long, pointy beards."]},
"Long (Default)": {"hair": ["Add width: Curls, waves, shoulder-length with layers. Bangs (blunt/side-swept). Avoid height."], "beard": ["Fuller on cheeks: full beard, mutton chops. Avoid long, pointy beards."]},
"Heart": {"hair": ["Add jawline volume: chin-length bobs, layered shoulder cuts. Side-swept bangs/textured fringe for forehead."], "beard": ["Fuller beards to add jaw width: Garibaldi, full beard carefully shaped."]},
"Heart/Inverted Triangle": {"hair": ["Add jawline volume: chin-length bobs, layered shoulder cuts. Side-swept bangs for forehead."], "beard": ["Fuller beards to add jaw width: Garibaldi, full beard shaped."]},
"Square": {"hair": ["Softer styles: waves, curls, layers. Textured cuts, off-center parts. Avoid sharp, geometric cuts if aiming to soften."], "beard": ["Circle beard, rounded full beard. Stubble can highlight jaw if desired."]},
"Round": {"hair": ["Add height and length: pompadour, quiff, faux hawk, side part. Layers. Avoid blunt bobs at chin or very short, round cuts."], "beard": ["Add length to chin: goatee, soul patch, beard shorter on sides & longer at chin (ducktail)."]},
"Round (Default)": {"hair": ["Add height and length: pompadour, quiff, faux hawk, side part. Layers. Avoid blunt bobs at chin or very short, round cuts."], "beard": ["Add length to chin: goatee, soul patch, beard shorter on sides & longer at chin (ducktail)."]},
"Diamond": {"hair": ["Soften forehead & jaw: chin bobs, shoulder length with layers, textured fringe. Side-swept bangs."], "beard": ["Fuller at chin, possibly some width at jaw but not cheeks: Balbo, shorter full beard."]},
"Unknown": {"hair": ["Upload a clearer image for analysis."], "beard": ["Upload a clearer image for analysis."]},
"Unknown (div zero)": {"hair": ["Measurement error. Try different image."], "beard": ["Measurement error. Try different image."]},
}
sugg = base_suggestions.get(face_shape, {"hair": ["General advice: consult a professional stylist."], "beard": ["Experiment with styles that you feel confident in."]})
hair_sug = "\n".join([f"- {s}" for s in sugg["hair"]])
beard_sug = "\n".join([f"- {s}" for s in sugg["beard"]])
side_note = ""
if "Analyzed" in side_profile_info:
side_note = "\n\n*Side profile analyzed. Future versions could use this for more tailored advice (e.g., jawline definition).*"
elif "Not provided" not in side_profile_info and side_profile_info: # If there was an attempt but it failed
side_note = f"\n\n*Side profile: {side_profile_info}*"
return f"**Haircut Suggestions for {face_shape} Face:**\n{hair_sug}\n\n**Beard Style Suggestions for {face_shape} Face:**\n{beard_sug}{side_note}"
def analyze_face_and_suggest_v2(front_image_input, side_image_input_optional):
if front_image_input is None:
return None, "Please upload a front-facing photo.", ""
# Ensure models are loaded
if not face_detection_model or not face_mesh_detector:
error_msg = []
if not face_detection_model: error_msg.append("Face detector not loaded.")
if not face_mesh_detector: error_msg.append("Landmark detector not loaded.")
return None, " ".join(error_msg) + " Please check Space logs.", ""
img_pil = Image.fromarray(front_image_input).convert("RGB")
cropped_face_pil, error_msg_detect = detect_face_local(img_pil)
if error_msg_detect:
return None, error_msg_detect, "" # No measurements if face detection fails
if cropped_face_pil is None:
return None, "Could not detect a face.", ""
landmarks, error_msg_lm, face_with_landmarks_pil = get_landmarks_and_draw(cropped_face_pil)
if error_msg_lm:
return face_with_landmarks_pil, f"Face detected. Error getting landmarks: {error_msg_lm}", "Cannot suggest hairstyles without landmark analysis."
img_w, img_h = cropped_face_pil.size
estimated_shape, measurements = estimate_face_shape_from_landmarks_v2(landmarks, img_w, img_h)
measurements_str = "\n".join([f"- {k.replace('_norm',' (norm. ratio)'):<25}: {v:.3f}" for k,v in measurements.items()])
analysis_text = f"Estimated Face Shape: **{estimated_shape}**\n\nNormalized Measurements:\n{measurements_str}"
side_profile_status = "Not provided"
if side_image_input_optional is not None:
# Pass the numpy array directly
side_profile_status, _ = get_side_profile_assessment(side_image_input_optional)
analysis_text += f"\n\nSide Profile: {side_profile_status}"
suggestions_text = get_hairstyle_suggestions_v2(estimated_shape, side_profile_status)
return face_with_landmarks_pil, analysis_text, suggestions_text
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# ✂️ AI Hairstyle & Beard Suggester 🧔")
gr.Markdown(
"Upload a clear, front-facing photo. Optionally, upload a side profile."
"\n*Disclaimer: This app uses local AI models for face detection and landmark-based shape estimation. Suggestions are general and based on heuristics.*"
)
with gr.Row():
with gr.Column(scale=1):
front_image_input = gr.Image(type="numpy", label="Front Face Photo (Required)", sources=["upload", "webcam"])
side_image_input = gr.Image(type="numpy", label="Side Profile Photo (Optional)", sources=["upload", "webcam"])
submit_btn = gr.Button("Get Suggestions", variant="primary")
with gr.Column(scale=2):
output_image_landmarks = gr.Image(label="Detected Face with Landmarks")
output_analysis_info = gr.Markdown(label="Face Analysis & Measurements")
output_suggestions = gr.Markdown(label="Suggestions")
submit_btn.click(
analyze_face_and_suggest_v2,
inputs=[front_image_input, side_image_input],
outputs=[output_image_landmarks, output_analysis_info, output_suggestions]
)
gr.Markdown("--- \n ### Notes: \n - **Face Shape Estimation:** Based on ratios of distances between facial landmarks (MediaPipe). The categories (Oval, Round, etc.) and classification rules are experimental. \n - **Landmark Visualization:** Green mesh shows detected facial landmarks. \n - **Model Loading:** Tries `hustvl/yolos-face` first, then `hustvl/yolos-tiny` (person detection) as fallback. Check Space logs for details.")
if __name__ == "__main__":
# Only launch if at least the fallback detection model and mediapipe loaded
if (face_detection_model and face_image_processor and FACE_LABEL_ID != -1) and \
(face_mesh_detector and mp_drawing and drawing_spec):
print("Launching Gradio App...")
demo.launch()
else:
print("Gradio app not launched due to critical model loading errors. Please check the logs.")
if not (face_detection_model and face_image_processor and FACE_LABEL_ID != -1):
print("-> Face detection model failed to load.")
if not (face_mesh_detector and mp_drawing and drawing_spec):
print("-> MediaPipe landmark model failed to initialize.")