Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,36 +2,48 @@ import gradio as gr
|
|
2 |
from PIL import Image, ImageDraw
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
-
from transformers import YolosImageProcessor, YolosForObjectDetection
|
6 |
import mediapipe as mp
|
7 |
import math
|
|
|
8 |
|
9 |
# --- Model Initialization ---
|
10 |
-
# 1. Face Detection Model
|
11 |
-
print("
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
16 |
|
17 |
try:
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
#
|
22 |
-
FACE_LABEL_ID = 0 #
|
23 |
-
print(f"
|
24 |
except Exception as e:
|
25 |
-
print(f"Error loading {
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# 2. Facial Landmark Model (MediaPipe Face Mesh)
|
34 |
print("Initializing MediaPipe Face Mesh...")
|
|
|
|
|
|
|
|
|
35 |
try:
|
36 |
mp_face_mesh = mp.solutions.face_mesh
|
37 |
face_mesh_detector = mp_face_mesh.FaceMesh(
|
@@ -44,8 +56,7 @@ try:
|
|
44 |
print("MediaPipe Face Mesh initialized successfully.")
|
45 |
except Exception as e:
|
46 |
print(f"Error initializing MediaPipe Face Mesh: {e}")
|
47 |
-
|
48 |
-
mp_drawing = None
|
49 |
|
50 |
|
51 |
# --- Helper Functions ---
|
@@ -53,64 +64,59 @@ def detect_face_local(image_pil):
|
|
53 |
if not face_image_processor or not face_detection_model or FACE_LABEL_ID == -1:
|
54 |
return None, "Face detection model not loaded or configured properly."
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
padding_h = (best_box[3] - best_box[1]) * 0.1 # 10% padding height
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
cropped_image = image_pil.crop((xmin, ymin, xmax, ymax))
|
83 |
-
return cropped_image, None
|
84 |
-
else:
|
85 |
-
return None, "No face detected with sufficient confidence."
|
86 |
|
87 |
def get_landmarks_and_draw(image_pil):
|
88 |
-
if not face_mesh_detector or not mp_drawing:
|
89 |
-
return None, "MediaPipe Face Mesh not initialized for landmarks.", image_pil
|
90 |
|
91 |
-
image_rgb_mp = np.array(image_pil.convert('RGB'))
|
92 |
results = face_mesh_detector.process(image_rgb_mp)
|
93 |
|
94 |
-
annotated_image_pil = image_pil.copy()
|
95 |
|
96 |
if results.multi_face_landmarks:
|
97 |
-
landmarks = results.multi_face_landmarks[0]
|
98 |
-
|
99 |
-
# Draw landmarks on the PIL image
|
100 |
-
# Convert PIL to NumPy array for drawing, then back to PIL
|
101 |
image_np_to_draw = np.array(annotated_image_pil)
|
102 |
-
|
103 |
-
|
104 |
-
y = int(landmark.y * image_np_to_draw.shape[0])
|
105 |
-
# Small green circle for each landmark (using PIL Draw directly for simplicity here)
|
106 |
-
# For more complex drawing, use mp_drawing.draw_landmarks on the numpy array
|
107 |
-
|
108 |
-
# Using mp_drawing.draw_landmarks for better visualization
|
109 |
mp_drawing.draw_landmarks(
|
110 |
image=image_np_to_draw,
|
111 |
landmark_list=landmarks,
|
112 |
connections=mp_face_mesh.FACEMESH_TESSELATION, # Shows mesh
|
113 |
-
# connections=mp_face_mesh.FACEMESH_CONTOURS, # Shows contours
|
114 |
landmark_drawing_spec=drawing_spec,
|
115 |
connection_drawing_spec=drawing_spec)
|
116 |
|
@@ -120,51 +126,33 @@ def get_landmarks_and_draw(image_pil):
|
|
120 |
return None, "Could not detect facial landmarks.", annotated_image_pil
|
121 |
|
122 |
|
123 |
-
def _distance_2d_normalized(p1, p2):
|
124 |
return math.sqrt((p1.x - p2.x)**2 + (p1.y - p2.y)**2)
|
125 |
|
126 |
def estimate_face_shape_from_landmarks_v2(landmarks, img_width, img_height):
|
127 |
if not landmarks:
|
128 |
return "Unknown", {}
|
129 |
|
130 |
-
# --- Key Anthropometric Ratios for Face Shape ---
|
131 |
-
# Based on MediaPipe landmark indices (https://github.com/google/mediapipe/blob/master/mediapipe/python/solutions/face_mesh_connections.py)
|
132 |
-
# These are illustrative; precise points can vary based on definitions.
|
133 |
-
|
134 |
-
# Face Height: Approx. Trichion (hairline top - 10) to Gnathion (chin bottom - 152)
|
135 |
-
# Since landmark 10 can be on hair, let's use a point slightly lower or average of forehead top points
|
136 |
-
# Top of forehead (10), Midpoint between brows (e.g., 168 or 9)
|
137 |
-
# Chin point (152)
|
138 |
p_forehead_top_center = landmarks.landmark[10]
|
139 |
p_chin_bottom = landmarks.landmark[152]
|
140 |
-
face_height = abs(p_forehead_top_center.y - p_chin_bottom.y)
|
141 |
|
142 |
-
# Bizygomatic Width (Cheekbone to Cheekbone - widest part of face):
|
143 |
-
# Left Zygion (approx. 234 or 130/133) to Right Zygion (approx. 454 or 359/362)
|
144 |
-
# Let's use standard contour points for face oval: e.g., Left: 234, Right: 454
|
145 |
p_cheek_left = landmarks.landmark[234]
|
146 |
p_cheek_right = landmarks.landmark[454]
|
147 |
-
face_width_cheeks = abs(p_cheek_left.x - p_cheek_right.x)
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
p_forehead_L = landmarks.landmark[70] # Or 103, 67
|
152 |
-
p_forehead_R = landmarks.landmark[300] # Or 332, 297
|
153 |
forehead_width = abs(p_forehead_L.x - p_forehead_R.x)
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
p_jaw_angle_L = landmarks.landmark[172] # Or 147
|
158 |
-
p_jaw_angle_R = landmarks.landmark[397] # Or 376
|
159 |
jaw_width_gonial = abs(p_jaw_angle_L.x - p_jaw_angle_R.x)
|
160 |
|
161 |
-
|
162 |
-
# E.g. landmarks 176 and 400, or slightly higher like 135 and 364
|
163 |
-
p_chin_width_L = landmarks.landmark[143] # Points on the chin body
|
164 |
p_chin_width_R = landmarks.landmark[372]
|
165 |
chin_width = abs(p_chin_width_L.x - p_chin_width_R.x)
|
166 |
|
167 |
-
|
168 |
measurements = {
|
169 |
"face_height_norm": face_height,
|
170 |
"face_width_cheeks_norm": face_width_cheeks,
|
@@ -172,65 +160,51 @@ def estimate_face_shape_from_landmarks_v2(landmarks, img_width, img_height):
|
|
172 |
"jaw_width_gonial_norm": jaw_width_gonial,
|
173 |
"chin_width_norm": chin_width
|
174 |
}
|
175 |
-
print("Normalized Measurements:", measurements)
|
176 |
|
177 |
-
# --- Classification Logic (Needs significant refinement) ---
|
178 |
-
# Ratios are key to normalize for face size in image
|
179 |
if face_width_cheeks == 0: return "Unknown (div zero)", measurements
|
180 |
|
181 |
-
# Facial Index: Height / Width
|
182 |
facial_index = face_height / face_width_cheeks if face_width_cheeks > 0 else 0
|
183 |
-
|
184 |
-
# Relative Widths (compared to cheekbone width as it's often the widest)
|
185 |
forehead_to_cheek_ratio = forehead_width / face_width_cheeks
|
186 |
jaw_to_cheek_ratio = jaw_width_gonial / face_width_cheeks
|
187 |
-
|
188 |
-
|
189 |
shape = "Unknown"
|
190 |
|
191 |
-
# These rules are more like guidelines and need extensive testing and tuning.
|
192 |
-
# Consider a decision tree or a more structured approach.
|
193 |
if facial_index > 1.05: # Longer than wide
|
194 |
-
if forehead_to_cheek_ratio > 0.
|
195 |
-
|
196 |
-
elif
|
197 |
-
shape = "Heart/Inverted Triangle"
|
198 |
else:
|
199 |
shape = "Long"
|
200 |
-
elif facial_index < 0.95: # Wider than long, or close to equal
|
201 |
-
if forehead_to_cheek_ratio > 0.85 and jaw_to_cheek_ratio > 0.85 and abs(forehead_width - jaw_width_gonial) < forehead_width * 0.
|
202 |
-
|
203 |
-
# Differentiating Square and Round needs jawline CURVE analysis, which is harder.
|
204 |
-
# Let's use jaw_width vs cheek_width: if jaw is nearly as wide as cheeks -> Square tendency
|
205 |
-
if jaw_width_gonial > face_width_cheeks * 0.85:
|
206 |
shape = "Square"
|
207 |
else:
|
208 |
shape = "Round"
|
209 |
-
else: # If widths are not all similar
|
210 |
-
shape = "Round"
|
211 |
else: # facial_index between 0.95 and 1.05 (balanced height/width)
|
212 |
-
|
213 |
-
# Diamond: Widest at cheeks, forehead and jaw narrower.
|
214 |
-
if face_width_cheeks > forehead_width and face_width_cheeks > jaw_width_gonial and chin_width < jaw_width_gonial * 0.8:
|
215 |
shape = "Diamond"
|
216 |
-
elif forehead_width > jaw_width_gonial and face_width_cheeks > jaw_width_gonial and chin_width < jaw_width_gonial * 0.
|
217 |
-
|
218 |
-
# jaw_to_cheek_ratio less than forehead_to_cheek
|
219 |
-
if 0.8 < forehead_to_cheek_ratio < 1.0 and jaw_to_cheek_ratio < forehead_to_cheek_ratio * 0.95:
|
220 |
shape = "Oval"
|
221 |
-
else:
|
222 |
shape = "Heart"
|
223 |
-
|
224 |
-
|
225 |
-
shape = "Square" # All widths relatively similar
|
226 |
else:
|
227 |
-
shape = "Oval" #
|
228 |
|
229 |
if shape == "Unknown": # If no specific rules matched strongly
|
230 |
-
if 0.95 <= facial_index <= 1.05 and forehead_to_cheek_ratio < 1 and jaw_to_cheek_ratio < forehead_to_cheek_ratio:
|
231 |
shape = "Oval (Default)"
|
|
|
|
|
232 |
else:
|
233 |
-
|
234 |
|
235 |
return shape, measurements
|
236 |
|
@@ -239,68 +213,37 @@ def get_side_profile_assessment(side_image_pil):
|
|
239 |
if not side_image_pil:
|
240 |
return "Not provided", None
|
241 |
|
|
|
|
|
|
|
|
|
242 |
side_image_pil = side_image_pil.convert("RGB")
|
243 |
-
|
244 |
-
# In a real app, run detection here too.
|
245 |
-
landmarks, error_msg_lm, _ = get_landmarks_and_draw(side_image_pil) # We don't need drawn image here
|
246 |
|
247 |
if error_msg_lm or not landmarks:
|
248 |
return f"Could not analyze ({error_msg_lm or 'no landmarks'})", None
|
249 |
-
|
250 |
-
# --- Assess Jawline from Side Profile ---
|
251 |
-
# Points for jaw angle (simplified):
|
252 |
-
# Point near ear lobe (e.g., landmark 127, 234 can be temple for side)
|
253 |
-
# Let's try specific side profile landmarks if they differ, or use consistent ones.
|
254 |
-
# For jaw angle: 172 (Gonion area), 152 (Chin tip/Pogonion), a point up along the ramus (e.g. 177 or 34)
|
255 |
-
|
256 |
-
# This requires good landmark stability on side profiles, which can be tricky.
|
257 |
-
# A very simple proxy: horizontal prominence of chin vs. a point higher on jaw.
|
258 |
-
p_chin_tip = landmarks.landmark[152]
|
259 |
-
p_jaw_angle_approx = landmarks.landmark[172] # Approximate gonion from front view set
|
260 |
-
p_upper_jaw_point = landmarks.landmark[135] # A point higher on the mandible body
|
261 |
-
|
262 |
-
# We need to consider the orientation. Let's assume face is looking left or right.
|
263 |
-
# A very rough heuristic:
|
264 |
-
# If chin (p_chin_tip.x) is significantly "forward" (more extreme x value, depending on orientation)
|
265 |
-
# than the jaw_angle_approx.x, it might suggest a stronger jaw.
|
266 |
-
# This is highly dependent on head rotation and landmark stability.
|
267 |
-
|
268 |
-
# A more robust method would involve angles, but that requires careful landmark selection.
|
269 |
-
# For now, let's just acknowledge if landmarks were found.
|
270 |
-
# In future, one could calculate the angle formed by landmarks such as:
|
271 |
-
# - A point on the ear (e.g. 127)
|
272 |
-
# - The gonion (jaw angle, e.g. 172 from frontal set, or a side-specific one)
|
273 |
-
# - The pogonion (chin tip, 152)
|
274 |
-
# A smaller angle (more acute) might indicate a sharper jawline.
|
275 |
|
276 |
-
#
|
277 |
-
#
|
278 |
-
#
|
279 |
-
#
|
280 |
-
|
281 |
-
# mag_BC = math.sqrt(vec_BC[0]**2 + vec_BC[1]**2)
|
282 |
-
# angle_rad = math.acos(dot_product / (mag_BA * mag_BC))
|
283 |
-
# angle_deg = math.degrees(angle_rad)
|
284 |
-
# This is sensitive to landmark choice and head pose.
|
285 |
-
|
286 |
-
return "Analyzed (details TBD)", landmarks # Placeholder
|
287 |
|
288 |
def get_hairstyle_suggestions_v2(face_shape, side_profile_info=""):
|
289 |
-
# (Expanded suggestion dictionary - keep it outside for brevity if very long)
|
290 |
-
# This needs to be more granular based on the new shapes from estimate_face_shape_v2
|
291 |
base_suggestions = {
|
292 |
"Oval": {"hair": ["Most styles work. Consider layers, textured crops, or side parts."], "beard": ["Versatile. Classic full beard, short boxed, or stubble."]},
|
293 |
"Oval (Default)": {"hair": ["Versatile. Try layers or a textured crop. Side parts can be flattering."], "beard": ["Well-groomed stubble or a short boxed beard."]},
|
294 |
"Long/Oblong": {"hair": ["Add width: Curls, waves, shoulder-length with layers. Bangs (blunt/side-swept). Avoid height."], "beard": ["Fuller on cheeks: full beard, mutton chops. Avoid long, pointy beards."]},
|
295 |
"Long": {"hair": ["Add width: Curls, waves, shoulder-length with layers. Bangs (blunt/side-swept). Avoid height."], "beard": ["Fuller on cheeks: full beard, mutton chops. Avoid long, pointy beards."]},
|
|
|
296 |
"Heart": {"hair": ["Add jawline volume: chin-length bobs, layered shoulder cuts. Side-swept bangs/textured fringe for forehead."], "beard": ["Fuller beards to add jaw width: Garibaldi, full beard carefully shaped."]},
|
297 |
"Heart/Inverted Triangle": {"hair": ["Add jawline volume: chin-length bobs, layered shoulder cuts. Side-swept bangs for forehead."], "beard": ["Fuller beards to add jaw width: Garibaldi, full beard shaped."]},
|
298 |
"Square": {"hair": ["Softer styles: waves, curls, layers. Textured cuts, off-center parts. Avoid sharp, geometric cuts if aiming to soften."], "beard": ["Circle beard, rounded full beard. Stubble can highlight jaw if desired."]},
|
299 |
"Round": {"hair": ["Add height and length: pompadour, quiff, faux hawk, side part. Layers. Avoid blunt bobs at chin or very short, round cuts."], "beard": ["Add length to chin: goatee, soul patch, beard shorter on sides & longer at chin (ducktail)."]},
|
|
|
300 |
"Diamond": {"hair": ["Soften forehead & jaw: chin bobs, shoulder length with layers, textured fringe. Side-swept bangs."], "beard": ["Fuller at chin, possibly some width at jaw but not cheeks: Balbo, shorter full beard."]},
|
301 |
"Unknown": {"hair": ["Upload a clearer image for analysis."], "beard": ["Upload a clearer image for analysis."]},
|
302 |
"Unknown (div zero)": {"hair": ["Measurement error. Try different image."], "beard": ["Measurement error. Try different image."]},
|
303 |
-
"Round (Default)": {"hair": ["Add height and length: pompadour, quiff, faux hawk, side part. Layers. Avoid blunt bobs at chin or very short, round cuts."], "beard": ["Add length to chin: goatee, soul patch, beard shorter on sides & longer at chin (ducktail)."]},
|
304 |
}
|
305 |
|
306 |
sugg = base_suggestions.get(face_shape, {"hair": ["General advice: consult a professional stylist."], "beard": ["Experiment with styles that you feel confident in."]})
|
@@ -308,57 +251,58 @@ def get_hairstyle_suggestions_v2(face_shape, side_profile_info=""):
|
|
308 |
hair_sug = "\n".join([f"- {s}" for s in sugg["hair"]])
|
309 |
beard_sug = "\n".join([f"- {s}" for s in sugg["beard"]])
|
310 |
|
311 |
-
|
312 |
if "Analyzed" in side_profile_info:
|
313 |
-
side_note = "\n\n*Side profile
|
314 |
-
|
315 |
-
side_note = ""
|
|
|
316 |
|
317 |
return f"**Haircut Suggestions for {face_shape} Face:**\n{hair_sug}\n\n**Beard Style Suggestions for {face_shape} Face:**\n{beard_sug}{side_note}"
|
318 |
|
319 |
|
320 |
def analyze_face_and_suggest_v2(front_image_input, side_image_input_optional):
|
321 |
if front_image_input is None:
|
322 |
-
return None, "Please upload a front-facing photo.", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
|
324 |
img_pil = Image.fromarray(front_image_input).convert("RGB")
|
325 |
|
326 |
-
# 1. Detect Face
|
327 |
cropped_face_pil, error_msg_detect = detect_face_local(img_pil)
|
328 |
if error_msg_detect:
|
329 |
-
return None, error_msg_detect, ""
|
330 |
-
if cropped_face_pil is None:
|
331 |
-
return None, "Could not detect a face.", ""
|
332 |
|
333 |
-
# 2. Get Facial Landmarks and Draw them
|
334 |
landmarks, error_msg_lm, face_with_landmarks_pil = get_landmarks_and_draw(cropped_face_pil)
|
335 |
if error_msg_lm:
|
336 |
-
return face_with_landmarks_pil, f"Face detected. Error getting landmarks: {error_msg_lm}", "Cannot suggest hairstyles without landmark analysis."
|
337 |
|
338 |
-
|
339 |
-
img_w, img_h = cropped_face_pil.size # Use cropped face dimensions
|
340 |
estimated_shape, measurements = estimate_face_shape_from_landmarks_v2(landmarks, img_w, img_h)
|
341 |
|
342 |
-
measurements_str = "\n".join([f"- {k.replace('_norm',' (norm.)')}: {v:.
|
343 |
analysis_text = f"Estimated Face Shape: **{estimated_shape}**\n\nNormalized Measurements:\n{measurements_str}"
|
344 |
|
345 |
-
|
346 |
-
side_profile_status = "Not provided or not analyzed"
|
347 |
-
side_profile_data = None
|
348 |
if side_image_input_optional is not None:
|
349 |
-
|
350 |
-
side_profile_status,
|
351 |
analysis_text += f"\n\nSide Profile: {side_profile_status}"
|
352 |
-
# Future: Modify 'estimated_shape' or suggestions based on side_profile_data
|
353 |
|
354 |
-
# 5. Get Suggestions
|
355 |
suggestions_text = get_hairstyle_suggestions_v2(estimated_shape, side_profile_status)
|
356 |
|
357 |
return face_with_landmarks_pil, analysis_text, suggestions_text
|
358 |
|
359 |
# --- Gradio Interface ---
|
360 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
361 |
-
gr.Markdown("# ✂️ AI Hairstyle & Beard Suggester
|
362 |
gr.Markdown(
|
363 |
"Upload a clear, front-facing photo. Optionally, upload a side profile."
|
364 |
"\n*Disclaimer: This app uses local AI models for face detection and landmark-based shape estimation. Suggestions are general and based on heuristics.*"
|
@@ -379,11 +323,18 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
379 |
inputs=[front_image_input, side_image_input],
|
380 |
outputs=[output_image_landmarks, output_analysis_info, output_suggestions]
|
381 |
)
|
382 |
-
gr.Markdown("--- \n ###
|
383 |
|
384 |
|
385 |
if __name__ == "__main__":
|
386 |
-
if
|
|
|
|
|
|
|
387 |
demo.launch()
|
388 |
else:
|
389 |
-
print("Gradio app not launched due to model loading errors.
|
|
|
|
|
|
|
|
|
|
2 |
from PIL import Image, ImageDraw
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
+
from transformers import YolosImageProcessor, YolosForObjectDetection
|
6 |
import mediapipe as mp
|
7 |
import math
|
8 |
+
import os # For potential future environment variable use
|
9 |
|
10 |
# --- Model Initialization ---
|
11 |
+
# 1. Face Detection Model
|
12 |
+
print("Attempting to load face detection model...")
|
13 |
+
PRIMARY_DETECTION_MODEL_NAME = "hustvl/yolos-face"
|
14 |
+
FALLBACK_DETECTION_MODEL_NAME = "hustvl/yolos-tiny" # Detects 'person'
|
15 |
+
FACE_LABEL_ID = -1 # Will be set based on which model loads
|
16 |
+
|
17 |
+
face_image_processor = None
|
18 |
+
face_detection_model = None
|
19 |
|
20 |
try:
|
21 |
+
print(f"Trying primary model: {PRIMARY_DETECTION_MODEL_NAME}")
|
22 |
+
face_image_processor = YolosImageProcessor.from_pretrained(PRIMARY_DETECTION_MODEL_NAME)
|
23 |
+
face_detection_model = YolosForObjectDetection.from_pretrained(PRIMARY_DETECTION_MODEL_NAME)
|
24 |
+
# For hustvl/yolos-face, the label for "face" is 0.
|
25 |
+
FACE_LABEL_ID = 0 # Corresponds to "face"
|
26 |
+
print(f"Successfully loaded primary face detection model: {PRIMARY_DETECTION_MODEL_NAME} (label 'face': {FACE_LABEL_ID})")
|
27 |
except Exception as e:
|
28 |
+
print(f"Error loading primary model {PRIMARY_DETECTION_MODEL_NAME}: {e}")
|
29 |
+
print(f"Attempting to load fallback model: {FALLBACK_DETECTION_MODEL_NAME}")
|
30 |
+
try:
|
31 |
+
face_image_processor = YolosImageProcessor.from_pretrained(FALLBACK_DETECTION_MODEL_NAME)
|
32 |
+
face_detection_model = YolosForObjectDetection.from_pretrained(FALLBACK_DETECTION_MODEL_NAME)
|
33 |
+
# For hustvl/yolos-tiny (trained on COCO), 'person' is label 0.
|
34 |
+
FACE_LABEL_ID = 0 # We will use 'person' (label 0) as a proxy for face
|
35 |
+
print(f"Successfully loaded fallback detection model: {FALLBACK_DETECTION_MODEL_NAME} (using label 'person': {FACE_LABEL_ID})")
|
36 |
+
except Exception as e2:
|
37 |
+
print(f"Error loading fallback model {FALLBACK_DETECTION_MODEL_NAME}: {e2}")
|
38 |
+
print("!!! CRITICAL: Face detection model could not be loaded. The app might not function correctly. !!!")
|
39 |
+
# face_image_processor and face_detection_model will remain None
|
40 |
|
41 |
# 2. Facial Landmark Model (MediaPipe Face Mesh)
|
42 |
print("Initializing MediaPipe Face Mesh...")
|
43 |
+
mp_face_mesh = None
|
44 |
+
face_mesh_detector = None
|
45 |
+
mp_drawing = None
|
46 |
+
drawing_spec = None
|
47 |
try:
|
48 |
mp_face_mesh = mp.solutions.face_mesh
|
49 |
face_mesh_detector = mp_face_mesh.FaceMesh(
|
|
|
56 |
print("MediaPipe Face Mesh initialized successfully.")
|
57 |
except Exception as e:
|
58 |
print(f"Error initializing MediaPipe Face Mesh: {e}")
|
59 |
+
# Variables will remain None
|
|
|
60 |
|
61 |
|
62 |
# --- Helper Functions ---
|
|
|
64 |
if not face_image_processor or not face_detection_model or FACE_LABEL_ID == -1:
|
65 |
return None, "Face detection model not loaded or configured properly."
|
66 |
|
67 |
+
try:
|
68 |
+
inputs = face_image_processor(images=image_pil, return_tensors="pt")
|
69 |
+
with torch.no_grad(): # Important for inference
|
70 |
+
outputs = face_detection_model(**inputs)
|
71 |
|
72 |
+
target_sizes = torch.tensor([image_pil.size[::-1]])
|
73 |
+
results = face_image_processor.post_process_object_detection(outputs, threshold=0.7, target_sizes=target_sizes)[0] # Threshold
|
74 |
|
75 |
+
best_box = None
|
76 |
+
max_score = 0
|
77 |
|
78 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
79 |
+
if label.item() == FACE_LABEL_ID: # Use .item() to get Python int from tensor
|
80 |
+
if score.item() > max_score:
|
81 |
+
max_score = score.item()
|
82 |
+
best_box = box.tolist()
|
83 |
|
84 |
+
if best_box:
|
85 |
+
padding_w = (best_box[2] - best_box[0]) * 0.15 # 15% padding width
|
86 |
+
padding_h = (best_box[3] - best_box[1]) * 0.15 # 15% padding height
|
|
|
87 |
|
88 |
+
xmin = max(0, best_box[0] - padding_w)
|
89 |
+
ymin = max(0, best_box[1] - padding_h)
|
90 |
+
xmax = min(image_pil.width, best_box[2] + padding_w)
|
91 |
+
ymax = min(image_pil.height, best_box[3] + padding_h)
|
92 |
+
|
93 |
+
cropped_image = image_pil.crop((xmin, ymin, xmax, ymax))
|
94 |
+
return cropped_image, None
|
95 |
+
else:
|
96 |
+
return None, "No face/person detected with sufficient confidence."
|
97 |
+
except Exception as e:
|
98 |
+
print(f"Error during local face detection: {e}")
|
99 |
+
return None, f"Error during face detection: {str(e)}"
|
100 |
|
|
|
|
|
|
|
|
|
101 |
|
102 |
def get_landmarks_and_draw(image_pil):
|
103 |
+
if not face_mesh_detector or not mp_drawing or not drawing_spec:
|
104 |
+
return None, "MediaPipe Face Mesh not initialized for landmarks.", image_pil
|
105 |
|
106 |
+
image_rgb_mp = np.array(image_pil.convert('RGB')) # MediaPipe prefers RGB
|
107 |
results = face_mesh_detector.process(image_rgb_mp)
|
108 |
|
109 |
+
annotated_image_pil = image_pil.copy()
|
110 |
|
111 |
if results.multi_face_landmarks:
|
112 |
+
landmarks = results.multi_face_landmarks[0]
|
|
|
|
|
|
|
113 |
image_np_to_draw = np.array(annotated_image_pil)
|
114 |
+
|
115 |
+
# Draw landmarks using MediaPipe's utility
|
|
|
|
|
|
|
|
|
|
|
116 |
mp_drawing.draw_landmarks(
|
117 |
image=image_np_to_draw,
|
118 |
landmark_list=landmarks,
|
119 |
connections=mp_face_mesh.FACEMESH_TESSELATION, # Shows mesh
|
|
|
120 |
landmark_drawing_spec=drawing_spec,
|
121 |
connection_drawing_spec=drawing_spec)
|
122 |
|
|
|
126 |
return None, "Could not detect facial landmarks.", annotated_image_pil
|
127 |
|
128 |
|
129 |
+
def _distance_2d_normalized(p1, p2):
|
130 |
return math.sqrt((p1.x - p2.x)**2 + (p1.y - p2.y)**2)
|
131 |
|
132 |
def estimate_face_shape_from_landmarks_v2(landmarks, img_width, img_height):
|
133 |
if not landmarks:
|
134 |
return "Unknown", {}
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
p_forehead_top_center = landmarks.landmark[10]
|
137 |
p_chin_bottom = landmarks.landmark[152]
|
138 |
+
face_height = abs(p_forehead_top_center.y - p_chin_bottom.y)
|
139 |
|
|
|
|
|
|
|
140 |
p_cheek_left = landmarks.landmark[234]
|
141 |
p_cheek_right = landmarks.landmark[454]
|
142 |
+
face_width_cheeks = abs(p_cheek_left.x - p_cheek_right.x)
|
143 |
|
144 |
+
p_forehead_L = landmarks.landmark[70]
|
145 |
+
p_forehead_R = landmarks.landmark[300]
|
|
|
|
|
146 |
forehead_width = abs(p_forehead_L.x - p_forehead_R.x)
|
147 |
|
148 |
+
p_jaw_angle_L = landmarks.landmark[172]
|
149 |
+
p_jaw_angle_R = landmarks.landmark[397]
|
|
|
|
|
150 |
jaw_width_gonial = abs(p_jaw_angle_L.x - p_jaw_angle_R.x)
|
151 |
|
152 |
+
p_chin_width_L = landmarks.landmark[143]
|
|
|
|
|
153 |
p_chin_width_R = landmarks.landmark[372]
|
154 |
chin_width = abs(p_chin_width_L.x - p_chin_width_R.x)
|
155 |
|
|
|
156 |
measurements = {
|
157 |
"face_height_norm": face_height,
|
158 |
"face_width_cheeks_norm": face_width_cheeks,
|
|
|
160 |
"jaw_width_gonial_norm": jaw_width_gonial,
|
161 |
"chin_width_norm": chin_width
|
162 |
}
|
163 |
+
# print("Normalized Measurements:", {k: round(v,3) for k,v in measurements.items()})
|
164 |
|
|
|
|
|
165 |
if face_width_cheeks == 0: return "Unknown (div zero)", measurements
|
166 |
|
|
|
167 |
facial_index = face_height / face_width_cheeks if face_width_cheeks > 0 else 0
|
|
|
|
|
168 |
forehead_to_cheek_ratio = forehead_width / face_width_cheeks
|
169 |
jaw_to_cheek_ratio = jaw_width_gonial / face_width_cheeks
|
170 |
+
|
|
|
171 |
shape = "Unknown"
|
172 |
|
|
|
|
|
173 |
if facial_index > 1.05: # Longer than wide
|
174 |
+
if forehead_to_cheek_ratio > 0.85 and jaw_to_cheek_ratio > 0.85 and abs(forehead_width - jaw_width_gonial) < forehead_width * 0.20 :
|
175 |
+
shape = "Long/Oblong" # All widths relatively similar but face is long
|
176 |
+
elif forehead_width > jaw_width_gonial and chin_width < jaw_width_gonial * 0.85:
|
177 |
+
shape = "Heart/Inverted Triangle"
|
178 |
else:
|
179 |
shape = "Long"
|
180 |
+
elif facial_index < 0.95: # Wider than long, or close to equal width/height and not distinctly Diamond/Heart
|
181 |
+
if forehead_to_cheek_ratio > 0.85 and jaw_to_cheek_ratio > 0.85 and abs(forehead_width - jaw_width_gonial) < forehead_width * 0.20:
|
182 |
+
if jaw_width_gonial > face_width_cheeks * 0.88: # Strong jaw compared to cheeks
|
|
|
|
|
|
|
183 |
shape = "Square"
|
184 |
else:
|
185 |
shape = "Round"
|
186 |
+
else: # If widths are not all similar, default to Round for wider faces
|
187 |
+
shape = "Round"
|
188 |
else: # facial_index between 0.95 and 1.05 (balanced height/width)
|
189 |
+
if face_width_cheeks > forehead_width and face_width_cheeks > jaw_width_gonial and chin_width < jaw_width_gonial * 0.85:
|
|
|
|
|
190 |
shape = "Diamond"
|
191 |
+
elif forehead_width > jaw_width_gonial and face_width_cheeks > jaw_width_gonial and chin_width < jaw_width_gonial * 0.8:
|
192 |
+
if 0.80 < forehead_to_cheek_ratio < 1.0 and jaw_to_cheek_ratio < forehead_to_cheek_ratio * 0.95:
|
|
|
|
|
193 |
shape = "Oval"
|
194 |
+
else:
|
195 |
shape = "Heart"
|
196 |
+
elif abs(forehead_width - jaw_width_gonial) < forehead_width * 0.15 and abs(face_width_cheeks - forehead_width) < forehead_width * 0.15 :
|
197 |
+
shape = "Square"
|
|
|
198 |
else:
|
199 |
+
shape = "Oval" # General fallback for balanced faces not matching other criteria
|
200 |
|
201 |
if shape == "Unknown": # If no specific rules matched strongly
|
202 |
+
if 0.95 <= facial_index <= 1.05 and forehead_to_cheek_ratio < 1.0 and jaw_to_cheek_ratio < forehead_to_cheek_ratio:
|
203 |
shape = "Oval (Default)"
|
204 |
+
elif facial_index < 0.95:
|
205 |
+
shape = "Round (Default)"
|
206 |
else:
|
207 |
+
shape = "Long (Default)"
|
208 |
|
209 |
return shape, measurements
|
210 |
|
|
|
213 |
if not side_image_pil:
|
214 |
return "Not provided", None
|
215 |
|
216 |
+
# Convert Gradio Image (numpy array) to PIL Image if it's not already
|
217 |
+
if isinstance(side_image_pil, np.ndarray):
|
218 |
+
side_image_pil = Image.fromarray(side_image_pil)
|
219 |
+
|
220 |
side_image_pil = side_image_pil.convert("RGB")
|
221 |
+
landmarks, error_msg_lm, _ = get_landmarks_and_draw(side_image_pil)
|
|
|
|
|
222 |
|
223 |
if error_msg_lm or not landmarks:
|
224 |
return f"Could not analyze ({error_msg_lm or 'no landmarks'})", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
+
# Basic assessment placeholder
|
227 |
+
# E.g. Chin prominence (landmark 152's x vs jaw angle 172's x)
|
228 |
+
# This is highly dependent on consistent side view and requires careful calibration
|
229 |
+
# For now, just acknowledge landmarks were found
|
230 |
+
return "Analyzed (basic landmark detection)", landmarks
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
def get_hairstyle_suggestions_v2(face_shape, side_profile_info=""):
|
|
|
|
|
233 |
base_suggestions = {
|
234 |
"Oval": {"hair": ["Most styles work. Consider layers, textured crops, or side parts."], "beard": ["Versatile. Classic full beard, short boxed, or stubble."]},
|
235 |
"Oval (Default)": {"hair": ["Versatile. Try layers or a textured crop. Side parts can be flattering."], "beard": ["Well-groomed stubble or a short boxed beard."]},
|
236 |
"Long/Oblong": {"hair": ["Add width: Curls, waves, shoulder-length with layers. Bangs (blunt/side-swept). Avoid height."], "beard": ["Fuller on cheeks: full beard, mutton chops. Avoid long, pointy beards."]},
|
237 |
"Long": {"hair": ["Add width: Curls, waves, shoulder-length with layers. Bangs (blunt/side-swept). Avoid height."], "beard": ["Fuller on cheeks: full beard, mutton chops. Avoid long, pointy beards."]},
|
238 |
+
"Long (Default)": {"hair": ["Add width: Curls, waves, shoulder-length with layers. Bangs (blunt/side-swept). Avoid height."], "beard": ["Fuller on cheeks: full beard, mutton chops. Avoid long, pointy beards."]},
|
239 |
"Heart": {"hair": ["Add jawline volume: chin-length bobs, layered shoulder cuts. Side-swept bangs/textured fringe for forehead."], "beard": ["Fuller beards to add jaw width: Garibaldi, full beard carefully shaped."]},
|
240 |
"Heart/Inverted Triangle": {"hair": ["Add jawline volume: chin-length bobs, layered shoulder cuts. Side-swept bangs for forehead."], "beard": ["Fuller beards to add jaw width: Garibaldi, full beard shaped."]},
|
241 |
"Square": {"hair": ["Softer styles: waves, curls, layers. Textured cuts, off-center parts. Avoid sharp, geometric cuts if aiming to soften."], "beard": ["Circle beard, rounded full beard. Stubble can highlight jaw if desired."]},
|
242 |
"Round": {"hair": ["Add height and length: pompadour, quiff, faux hawk, side part. Layers. Avoid blunt bobs at chin or very short, round cuts."], "beard": ["Add length to chin: goatee, soul patch, beard shorter on sides & longer at chin (ducktail)."]},
|
243 |
+
"Round (Default)": {"hair": ["Add height and length: pompadour, quiff, faux hawk, side part. Layers. Avoid blunt bobs at chin or very short, round cuts."], "beard": ["Add length to chin: goatee, soul patch, beard shorter on sides & longer at chin (ducktail)."]},
|
244 |
"Diamond": {"hair": ["Soften forehead & jaw: chin bobs, shoulder length with layers, textured fringe. Side-swept bangs."], "beard": ["Fuller at chin, possibly some width at jaw but not cheeks: Balbo, shorter full beard."]},
|
245 |
"Unknown": {"hair": ["Upload a clearer image for analysis."], "beard": ["Upload a clearer image for analysis."]},
|
246 |
"Unknown (div zero)": {"hair": ["Measurement error. Try different image."], "beard": ["Measurement error. Try different image."]},
|
|
|
247 |
}
|
248 |
|
249 |
sugg = base_suggestions.get(face_shape, {"hair": ["General advice: consult a professional stylist."], "beard": ["Experiment with styles that you feel confident in."]})
|
|
|
251 |
hair_sug = "\n".join([f"- {s}" for s in sugg["hair"]])
|
252 |
beard_sug = "\n".join([f"- {s}" for s in sugg["beard"]])
|
253 |
|
254 |
+
side_note = ""
|
255 |
if "Analyzed" in side_profile_info:
|
256 |
+
side_note = "\n\n*Side profile analyzed. Future versions could use this for more tailored advice (e.g., jawline definition).*"
|
257 |
+
elif "Not provided" not in side_profile_info and side_profile_info: # If there was an attempt but it failed
|
258 |
+
side_note = f"\n\n*Side profile: {side_profile_info}*"
|
259 |
+
|
260 |
|
261 |
return f"**Haircut Suggestions for {face_shape} Face:**\n{hair_sug}\n\n**Beard Style Suggestions for {face_shape} Face:**\n{beard_sug}{side_note}"
|
262 |
|
263 |
|
264 |
def analyze_face_and_suggest_v2(front_image_input, side_image_input_optional):
|
265 |
if front_image_input is None:
|
266 |
+
return None, "Please upload a front-facing photo.", ""
|
267 |
+
|
268 |
+
# Ensure models are loaded
|
269 |
+
if not face_detection_model or not face_mesh_detector:
|
270 |
+
error_msg = []
|
271 |
+
if not face_detection_model: error_msg.append("Face detector not loaded.")
|
272 |
+
if not face_mesh_detector: error_msg.append("Landmark detector not loaded.")
|
273 |
+
return None, " ".join(error_msg) + " Please check Space logs.", ""
|
274 |
|
275 |
img_pil = Image.fromarray(front_image_input).convert("RGB")
|
276 |
|
|
|
277 |
cropped_face_pil, error_msg_detect = detect_face_local(img_pil)
|
278 |
if error_msg_detect:
|
279 |
+
return None, error_msg_detect, "" # No measurements if face detection fails
|
280 |
+
if cropped_face_pil is None:
|
281 |
+
return None, "Could not detect a face.", ""
|
282 |
|
|
|
283 |
landmarks, error_msg_lm, face_with_landmarks_pil = get_landmarks_and_draw(cropped_face_pil)
|
284 |
if error_msg_lm:
|
285 |
+
return face_with_landmarks_pil, f"Face detected. Error getting landmarks: {error_msg_lm}", "Cannot suggest hairstyles without landmark analysis."
|
286 |
|
287 |
+
img_w, img_h = cropped_face_pil.size
|
|
|
288 |
estimated_shape, measurements = estimate_face_shape_from_landmarks_v2(landmarks, img_w, img_h)
|
289 |
|
290 |
+
measurements_str = "\n".join([f"- {k.replace('_norm',' (norm. ratio)'):<25}: {v:.3f}" for k,v in measurements.items()])
|
291 |
analysis_text = f"Estimated Face Shape: **{estimated_shape}**\n\nNormalized Measurements:\n{measurements_str}"
|
292 |
|
293 |
+
side_profile_status = "Not provided"
|
|
|
|
|
294 |
if side_image_input_optional is not None:
|
295 |
+
# Pass the numpy array directly
|
296 |
+
side_profile_status, _ = get_side_profile_assessment(side_image_input_optional)
|
297 |
analysis_text += f"\n\nSide Profile: {side_profile_status}"
|
|
|
298 |
|
|
|
299 |
suggestions_text = get_hairstyle_suggestions_v2(estimated_shape, side_profile_status)
|
300 |
|
301 |
return face_with_landmarks_pil, analysis_text, suggestions_text
|
302 |
|
303 |
# --- Gradio Interface ---
|
304 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
305 |
+
gr.Markdown("# ✂️ AI Hairstyle & Beard Suggester 🧔")
|
306 |
gr.Markdown(
|
307 |
"Upload a clear, front-facing photo. Optionally, upload a side profile."
|
308 |
"\n*Disclaimer: This app uses local AI models for face detection and landmark-based shape estimation. Suggestions are general and based on heuristics.*"
|
|
|
323 |
inputs=[front_image_input, side_image_input],
|
324 |
outputs=[output_image_landmarks, output_analysis_info, output_suggestions]
|
325 |
)
|
326 |
+
gr.Markdown("--- \n ### Notes: \n - **Face Shape Estimation:** Based on ratios of distances between facial landmarks (MediaPipe). The categories (Oval, Round, etc.) and classification rules are experimental. \n - **Landmark Visualization:** Green mesh shows detected facial landmarks. \n - **Model Loading:** Tries `hustvl/yolos-face` first, then `hustvl/yolos-tiny` (person detection) as fallback. Check Space logs for details.")
|
327 |
|
328 |
|
329 |
if __name__ == "__main__":
|
330 |
+
# Only launch if at least the fallback detection model and mediapipe loaded
|
331 |
+
if (face_detection_model and face_image_processor and FACE_LABEL_ID != -1) and \
|
332 |
+
(face_mesh_detector and mp_drawing and drawing_spec):
|
333 |
+
print("Launching Gradio App...")
|
334 |
demo.launch()
|
335 |
else:
|
336 |
+
print("Gradio app not launched due to critical model loading errors. Please check the logs.")
|
337 |
+
if not (face_detection_model and face_image_processor and FACE_LABEL_ID != -1):
|
338 |
+
print("-> Face detection model failed to load.")
|
339 |
+
if not (face_mesh_detector and mp_drawing and drawing_spec):
|
340 |
+
print("-> MediaPipe landmark model failed to initialize.")
|