File size: 20,146 Bytes
9e91681 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import gradio as gr
import os
import zipfile
import time
import uuid # For unique filenames
# --- LLM/Model Setup ---
from transformers import pipeline as transformers_pipeline # For local list generation
from huggingface_hub import InferenceClient # For prompt refinement via API
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler # For image generation
from gradio_client import Client as GradioClient, handle_file # For 3D generation
# --- Configuration ---
# Consider making these configurable in the UI later
LIST_GENERATION_MODEL = "google/flan-t5-base" # Or another suitable small model
PROMPT_REFINEMENT_MODEL_API = "mistralai/Mixtral-8x7B-Instruct-v0.1" # Or another instruct model via Inference API
IMAGE_GENERATION_MODEL = "stabilityai/stable-diffusion-xl-base-1.0" # Or "runwayml/stable-diffusion-v1-5"
HUNYUAN_SPACE_ID = "tencent/Hunyuan3D-2"
OUTPUT_DIR = "outputs"
MODELS_SUBDIR = "3d_models"
IMAGES_SUBDIR = "image_previews"
ZIP_FILENAME = "3d_collection.zip"
# --- Initialize Clients/Pipelines (can be slow, consider loading on demand if needed) ---
# Use HF Token from Space secrets if available/needed for Inference API
HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN", None)
# Basic List Generator (local)
try:
list_generator = transformers_pipeline("text2text-generation", model=LIST_GENERATION_MODEL)
except Exception as e:
print(f"Warning: Could not load local list generator {LIST_GENERATION_MODEL}: {e}")
list_generator = None
# Prompt Refiner (API)
try:
if not HF_TOKEN:
print("Warning: HUGGINGFACE_TOKEN not set. Inference API calls might be rate-limited or fail.")
prompt_refiner = InferenceClient(model=PROMPT_REFINEMENT_MODEL_API, token=HF_TOKEN)
except Exception as e:
print(f"Warning: Could not initialize InferenceClient for {PROMPT_REFINEMENT_MODEL_API}: {e}")
prompt_refiner = None
# Image Generator (Local with Diffusers - requires GPU on Space for reasonable speed)
# Or consider an Image Gen API service if running on CPU hardware
try:
# Using XL as an example - adjust based on available hardware
image_pipeline = StableDiffusionPipeline.from_pretrained(IMAGE_GENERATION_MODEL, torch_dtype=torch.float16, use_safetensors=True)
# Move to GPU if available (check Space hardware)
# image_pipeline.to("cuda") # Uncomment if GPU is available
image_pipeline.scheduler = EulerDiscreteScheduler.from_config(image_pipeline.scheduler.config)
except Exception as e:
print(f"Warning: Could not load diffusers pipeline {IMAGE_GENERATION_MODEL}. Image generation might fail: {e}")
image_pipeline = None
# 3D Generator Client
try:
hunyuan_client = GradioClient(HUNYUAN_SPACE_ID)
except Exception as e:
print(f"Error initializing GradioClient for {HUNYUAN_SPACE_ID}: {e}")
hunyuan_client = None
# --- Helper Functions ---
def generate_list_local(theme, count):
if not list_generator:
return ["Error: List generator model not loaded."]
prompt = f"Generate a comma-separated list of {count} distinct types of {theme}."
try:
result = list_generator(prompt, max_length=200)[0]['generated_text']
items = [item.strip() for item in result.split(',') if item.strip()]
return items[:count] # Ensure we don't exceed the requested count
except Exception as e:
print(f"Error generating list: {e}")
return [f"Error: {e}"]
def refine_prompt_api(item_name):
if not prompt_refiner:
return f"A 3D model of a {item_name}" # Fallback basic prompt
prompt = f"Create a detailed, descriptive prompt for generating a highly realistic image of a single '{item_name}'. Focus on visual details suitable for a text-to-image AI. Only output the prompt itself."
try:
refined = prompt_refiner.text_generation(prompt, max_new_tokens=100)
# Clean up potential API artifacts if necessary
refined = refined.strip().strip('"')
return refined
except Exception as e:
print(f"Error refining prompt for '{item_name}': {e}")
# Fallback to a simpler prompt for 3D generation if refinement fails
return f"A high quality 3D model of a {item_name}"
def generate_image_local(refined_prompt, output_path):
if not image_pipeline:
print("Image generation pipeline not available.")
# Create a placeholder image or return None
# Example: from PIL import Image; img = Image.new('RGB', (60, 30), color = 'red'); img.save(output_path); return output_path
return None
try:
# Adjust inference steps/guidance as needed
image = image_pipeline(refined_prompt, num_inference_steps=25, guidance_scale=7.5).images[0]
image.save(output_path)
return output_path
except Exception as e:
print(f"Error generating image for prompt '{refined_prompt}': {e}")
return None
def generate_3d_model_hunyuan(refined_prompt_for_3d, output_dir, item_name_safe):
if not hunyuan_client:
print("Hunyuan 3D client not available.")
return None, "Client not initialized"
print(f"Requesting 3D model for: {refined_prompt_for_3d}")
# Use defaults for most parameters initially
try:
result_tuple = hunyuan_client.predict(
caption=refined_prompt_for_3d,
# Leave image and mv_image inputs as None for text-to-3D
image=None,
mv_image_front=None,
mv_image_back=None,
mv_image_left=None,
mv_image_right=None,
# Default values from API docs (can be overridden)
steps=30,
guidance_scale=5,
seed=1234, # Or use randomize_seed=True
octree_resolution=256,
check_box_rembg=True,
num_chunks=8000,
randomize_seed=True,
api_name="/generation_all" # Crucial!
)
# --- VERIFICATION NEEDED ---
# Check the actual return tuple structure. Assuming file path is first or second.
# Let's try the first element (index 0). If it's None or not a path, try index 1.
raw_filepath = None
if result_tuple and len(result_tuple) > 0 and isinstance(result_tuple[0], str):
raw_filepath = result_tuple[0]
elif result_tuple and len(result_tuple) > 1 and isinstance(result_tuple[1], str):
print("Using second element from result tuple for filepath.")
raw_filepath = result_tuple[1]
# --- END VERIFICATION NEEDED ---
if raw_filepath:
print(f"Job completed. Raw result path: {raw_filepath}")
os.makedirs(output_dir, exist_ok=True)
# Download the file using handle_file which manages temp paths etc.
# handle_file saves with a potentially random name in download_dir
downloaded_temp_path = handle_file(raw_filepath, download_dir=output_dir)
if downloaded_temp_path and os.path.exists(downloaded_temp_path):
# Rename it to something meaningful
file_ext = os.path.splitext(downloaded_temp_path)[1] # Get extension (.glb, .obj?)
if not file_ext: file_ext = ".glb" # Assume glb if unknown
final_path = os.path.join(output_dir, f"{item_name_safe}{file_ext}")
os.rename(downloaded_temp_path, final_path)
print(f"Model saved to: {final_path}")
return final_path, "Success"
else:
error_msg = f"handle_file failed to download or returned invalid path: {downloaded_temp_path}"
print(error_msg)
return None, error_msg
else:
error_msg = f"Job for '{refined_prompt_for_3d}' did not return a valid filepath in expected tuple elements."
print(error_msg)
# You might want to inspect the full result_tuple here for debugging
print(f"Full result tuple: {result_tuple}")
return None, error_msg
except Exception as e:
error_msg = f"Error calling Hunyuan3D API for '{refined_prompt_for_3d}': {e}"
print(error_msg)
return None, str(e)
def create_zip(files_to_zip, zip_filepath):
with zipfile.ZipFile(zip_filepath, 'w') as zf:
for file_path in files_to_zip:
if file_path and os.path.exists(file_path):
zf.write(file_path, os.path.basename(file_path))
return zip_filepath
# --- Gradio Interface & Logic ---
with gr.Blocks() as demo:
gr.Markdown("# 3D Asset Collection Generator")
gr.Markdown("Generate a list based on a theme, refine prompts, preview images, and generate selected 3D models using Hunyuan3D-2.")
if not HF_TOKEN:
gr.Warning("Hugging Face Token not found. Prompt refinement quality/rate limits may be affected. Consider adding HUGGINGFACE_TOKEN to Space secrets.")
if not image_pipeline:
gr.Warning("Local Image Generation model failed to load. Image previews will be skipped. Check Space hardware/logs.")
if not hunyuan_client:
gr.Error("Failed to connect to the Hunyuan3D-2 Space. 3D generation will not work.")
# State to hold intermediate results
# Using gr.State is good for simple values, for complex lists/dicts might need alternatives or careful handling
list_items_state = gr.State([])
refined_prompts_state = gr.State({}) # Dict: {item_name: refined_prompt}
image_paths_state = gr.State({}) # Dict: {item_name: image_path}
selected_items_state = gr.State([]) # List of item_names selected by user
generated_3d_files_state = gr.State([]) # List of paths to successfully generated models
with gr.Row():
theme_input = gr.Textbox(label="Theme", placeholder="e.g., reptiles, kitchen appliances, medieval weapons")
count_input = gr.Number(label="Number of Items", value=5, minimum=1, step=1)
generate_list_button = gr.Button("1. Generate List & Refine Prompts")
list_output_display = gr.Markdown("List will appear here...") # Or use gr.DataFrame
generate_images_button = gr.Button("2. Generate Image Previews", visible=False) # Hidden initially
# Use Gallery for display, Dataset for selection tracking
image_gallery = gr.Gallery(label="Image Previews", visible=False, elem_id="image_gallery")
# Dataset to hold data for selection (item_name, image_path, refined_prompt)
selection_data = gr.Dataset(components=[gr.Textbox(visible=False), gr.Textbox(visible=False), gr.Textbox(visible=False)], # item, img_path, prompt
headers=["Item Name", "Image", "Prompt"],
label="Select Items for 3D Generation",
visible=False)
generate_3d_button = gr.Button("3. Generate 3D Models for Selected Items", visible=False) # Hidden initially
status_output = gr.Markdown("") # For progress updates
final_zip_output = gr.File(label="Download 3D Model Collection (ZIP)", visible=False)
# --- Event Logic ---
def run_list_and_refine(theme, count):
if not theme:
return {list_output_display: "Please enter a theme.", generate_images_button: gr.Button(visible=False)}
# Ensure output dirs exist
os.makedirs(os.path.join(OUTPUT_DIR, IMAGES_SUBDIR), exist_ok=True)
os.makedirs(os.path.join(OUTPUT_DIR, MODELS_SUBDIR), exist_ok=True)
gr.Info("Generating list...")
items = generate_list_local(theme, int(count))
if not items or "Error:" in items[0]:
return {list_output_display: f"Failed to generate list: {items[0] if items else 'Unknown error'}",
generate_images_button: gr.Button(visible=False)}
list_items_state.value = items # Save items to state
gr.Info("Refining prompts via API...")
refined_prompts = {}
output_md = "### Generated List & Refined Prompts:\n\n"
for item in items:
refined = refine_prompt_api(item)
refined_prompts[item] = refined
output_md += f"* **{item}:** {refined}\n"
refined_prompts_state.value = refined_prompts # Save refined prompts
# Enable next step
return {
list_output_display: output_md,
generate_images_button: gr.Button(visible=True) # Show image gen button
}
generate_list_button.click(
fn=run_list_and_refine,
inputs=[theme_input, count_input],
outputs=[list_output_display, generate_images_button, list_items_state, refined_prompts_state] # Update state too
)
def run_image_generation(items, refined_prompts_dict):
if not image_pipeline:
# Skip image generation if pipeline not loaded
gr.Warning("Image pipeline not loaded. Skipping image previews.")
# Prepare data for selection without images
selection_samples = [[item, "N/A", refined_prompts_dict.get(item, "")] for item in items]
image_paths_state.value = {} # Clear image paths
return {
image_gallery: gr.Gallery(visible=False),
selection_data: gr.Dataset(samples=selection_samples, visible=True),
generate_3d_button: gr.Button(visible=True) # Allow proceeding without previews
}
gr.Info("Generating image previews... (this may take a while)")
image_paths = {}
gallery_images = []
selection_samples = [] # For the Dataset component
img_dir = os.path.join(OUTPUT_DIR, IMAGES_SUBDIR)
for item in items:
refined_prompt = refined_prompts_dict.get(item, f"Image of {item}") # Get refined prompt
safe_item_name = "".join(c if c.isalnum() else "_" for c in item)
img_filename = f"{safe_item_name}_{uuid.uuid4()}.png"
img_path = os.path.join(img_dir, img_filename)
generated_path = generate_image_local(refined_prompt, img_path)
if generated_path:
image_paths[item] = generated_path
gallery_images.append(generated_path)
selection_samples.append([item, generated_path, refined_prompt])
else:
# Handle image generation failure - maybe add placeholder info
selection_samples.append([item, "Failed", refined_prompt])
# Optionally add a placeholder to gallery_images too
image_paths_state.value = image_paths # Save image paths
# Show gallery and selection dataset
return {
image_gallery: gr.Gallery(value=gallery_images, visible=True),
selection_data: gr.Dataset(samples=selection_samples, visible=True),
generate_3d_button: gr.Button(visible=True) # Show 3D gen button
}
generate_images_button.click(
fn=run_image_generation,
inputs=[list_items_state, refined_prompts_state],
outputs=[image_gallery, selection_data, generate_3d_button, image_paths_state] # Update state
)
# Handler for when user makes selections in the Dataset
# Note: Gradio's Dataset selection handling might require specific event listeners
# or potentially using gr.CheckboxGroup or similar if Dataset selection is tricky.
# For simplicity here, we assume we can get the selected indices/items.
# A common pattern is to add a hidden Textbox updated by JS on selection,
# or use the Dataset's 'select' event if available and robust.
# Let's simulate getting selected *items* (requires correct component setup).
# This part might need refinement based on Gradio version/behavior.
# We'll trigger 3D generation directly from the button click for now,
# assuming the selection_data component holds the necessary info and selection state.
def run_3d_generation(selection_evt: gr.SelectData, all_items_data):
if not hunyuan_client:
return {status_output: "Hunyuan3D client not initialized. Cannot generate.", final_zip_output: gr.File(visible=False)}
selected_indices = selection_evt.index if selection_evt else []
if not selected_indices:
return {status_output: "Please select items from the table above before generating 3D models.", final_zip_output: gr.File(visible=False)}
# Extract selected items based on indices from the *current* data in the dataset
selected_items_info = [all_items_data[i] for i in selected_indices] # Each item is [name, img_path, prompt]
generated_files = []
status_messages = ["### 3D Generation Status:\n"]
model_dir = os.path.join(OUTPUT_DIR, MODELS_SUBDIR)
total_selected = len(selected_items_info)
for i, (item_name, _, refined_prompt) in enumerate(selected_items_info):
current_status = f"({i+1}/{total_selected}) Generating model for: **{item_name}**..."
print(current_status)
status_messages.append(f"* {current_status}")
# Update UI status progressively
yield {status_output: "\n".join(status_messages), final_zip_output: gr.File(visible=False)}
# Adapt prompt slightly for 3D if desired, or use the image prompt directly
prompt_for_3d = refined_prompt # Or customize: f"A high quality 3D model of {item_name}, {refined_prompt}"
item_name_safe = "".join(c if c.isalnum() else "_" for c in item_name)
# --- Retry Logic Placeholder ---
max_retries = 1 # Example: allow 1 retry
attempts = 0
model_path = None
last_error = "Unknown error"
while attempts <= max_retries:
attempts += 1
if attempts > 1:
status_messages.append(f" * Retrying ({attempts-1}/{max_retries})...")
yield {status_output: "\n".join(status_messages)}
time.sleep(2) # Brief pause before retry
model_path, msg = generate_3d_model_hunyuan(prompt_for_3d, model_dir, item_name_safe)
last_error = msg
if model_path:
generated_files.append(model_path)
status_messages.append(f" * Success! Model saved.")
break # Exit retry loop on success
else:
status_messages.append(f" * Attempt {attempts} failed: {msg}")
if not model_path:
status_messages.append(f" * **Failed** after {attempts} attempt(s). Last error: {last_error}")
# --- End Retry Logic ---
# Update UI status after each item
yield {status_output: "\n".join(status_messages)}
if generated_files:
status_messages.append("\nCreating ZIP archive...")
yield {status_output: "\n".join(status_messages)}
zip_path = os.path.join(OUTPUT_DIR, ZIP_FILENAME)
final_zip = create_zip(generated_files, zip_path)
status_messages.append(f"\n**Collection ready!** Download '{ZIP_FILENAME}' below.")
generated_3d_files_state.value = generated_files # Store final paths
return {status_output: "\n".join(status_messages), final_zip_output: gr.File(value=final_zip, visible=True)}
else:
status_messages.append("\nNo 3D models were successfully generated.")
return {status_output: "\n".join(status_messages), final_zip_output: gr.File(visible=False)}
# Link the button click to the generator function
# The 'select' event on Dataset provides selection info (gr.SelectData)
# We pass both the selection event data and the full dataset content
generate_3d_button.click(
fn=run_3d_generation,
inputs=[selection_data, selection_data], # Pass dataset twice: once for select event, once for full data access
outputs=[status_output, final_zip_output, generated_3d_files_state] # Update state
)
# Launch the Gradio app
demo.queue().launch(debug=True) # Enable queue for longer processes, debug for detailed errors |