Rogerjs commited on
Commit
1ccf8ee
·
verified ·
1 Parent(s): 49be262

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +104 -44
app.py CHANGED
@@ -1,11 +1,12 @@
1
- import gradio as gr
2
  import mne
3
  import numpy as np
4
  import pandas as pd
 
5
  from transformers import AutoTokenizer, AutoModelForCausalLM
6
  import torch
7
- import os
8
 
 
9
  model_name = "tiiuae/falcon-7b-instruct"
10
  tokenizer = AutoTokenizer.from_pretrained(model_name)
11
  model = AutoModelForCausalLM.from_pretrained(
@@ -20,57 +21,101 @@ def compute_band_power(psd, freqs, fmin, fmax):
20
  band_psd = psd[:, freq_mask].mean()
21
  return float(band_psd)
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  def load_eeg_data(file_path, default_sfreq=256.0, time_col='time'):
24
  """
25
- Load EEG data from a file with flexible CSV handling.
26
- - If FIF: Use read_raw_fif.
27
- - If CSV:
28
- * If `time_col` is present, use it as time.
29
- * Otherwise, assume a default sfreq and treat all columns as channels.
30
  """
31
  _, file_ext = os.path.splitext(file_path)
32
  file_ext = file_ext.lower()
33
 
34
  if file_ext == '.fif':
35
  raw = mne.io.read_raw_fif(file_path, preload=True)
 
36
  elif file_ext == '.csv':
37
  df = pd.read_csv(file_path)
38
 
39
- # Remove non-numeric columns except time_col
40
- for col in df.columns:
41
- if col != time_col:
42
- # Drop non-numeric columns if any
43
- if not pd.api.types.is_numeric_dtype(df[col]):
44
- df = df.drop(columns=[col])
45
-
46
- if time_col in df.columns:
47
- # Use the provided time column
48
  time = df[time_col].values
49
  data_df = df.drop(columns=[time_col])
50
-
 
 
 
 
 
51
  if len(time) < 2:
52
- raise ValueError("Not enough time points to estimate sampling frequency.")
53
- sfreq = 1.0 / np.mean(np.diff(time))
 
 
 
54
  else:
55
- # No explicit time column, assume uniform sampling at default_sfreq
56
- sfreq = default_sfreq
 
 
 
57
  data_df = df
 
58
 
59
- # Channels are all remaining columns
60
  ch_names = list(data_df.columns)
61
  data = data_df.values.T # shape: (n_channels, n_samples)
62
 
63
- # Create MNE info
64
  ch_types = ['eeg'] * len(ch_names)
65
  info = mne.create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
66
-
67
  raw = mne.io.RawArray(data, info)
 
68
  else:
69
- raise ValueError("Unsupported file format. Please provide a FIF or CSV file.")
70
-
71
  return raw
72
 
73
- def process_eeg(file, default_sfreq, time_col):
 
 
74
  raw = load_eeg_data(file.name, default_sfreq=float(default_sfreq), time_col=time_col)
75
 
76
  psd, freqs = mne.time_frequency.psd_welch(raw, fmin=1, fmax=40)
@@ -87,30 +132,45 @@ Data Summary: {data_summary}
87
 
88
  Provide a concise, user-friendly interpretation of these findings in simple terms.
89
  """
90
-
91
  inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
92
  outputs = model.generate(
93
  inputs, max_length=200, do_sample=True, top_k=50, top_p=0.95
94
  )
95
  summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
96
-
97
  return summary
98
 
99
- iface = gr.Interface(
100
- fn=process_eeg,
101
- inputs=[
102
- gr.File(label="Upload your EEG data (FIF or CSV)"),
103
- gr.Textbox(label="Default Sampling Frequency if no time column (Hz)", value="256"),
104
- gr.Textbox(label="Time column name (if exists)", value="time")
105
- ],
106
- outputs="text",
107
- title="NeuroNarrative-Lite: EEG Summary (Flexible CSV Handling)",
108
- description=(
109
- "Upload EEG data in FIF or CSV format. "
110
- "If CSV, either include a 'time' column or specify a default sampling frequency. "
111
- "Non-numeric columns will be removed (except the chosen time column)."
 
 
112
  )
113
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
 
115
  if __name__ == "__main__":
116
- iface.launch()
 
1
+ import os
2
  import mne
3
  import numpy as np
4
  import pandas as pd
5
+ import gradio as gr
6
  from transformers import AutoTokenizer, AutoModelForCausalLM
7
  import torch
 
8
 
9
+ # Load LLM
10
  model_name = "tiiuae/falcon-7b-instruct"
11
  tokenizer = AutoTokenizer.from_pretrained(model_name)
12
  model = AutoModelForCausalLM.from_pretrained(
 
21
  band_psd = psd[:, freq_mask].mean()
22
  return float(band_psd)
23
 
24
+ def inspect_file(file):
25
+ """
26
+ Inspect the uploaded file to determine available columns.
27
+ If FIF: Just inform that it's an MNE file and no time column is needed.
28
+ If CSV: Return a list of columns (both numeric and non-numeric).
29
+ """
30
+ if file is None:
31
+ return "No file uploaded.", [], "No preview available."
32
+ file_path = file.name
33
+ _, file_ext = os.path.splitext(file_path)
34
+
35
+ file_ext = file_ext.lower()
36
+ if file_ext == ".fif":
37
+ # FIF files: We know they're MNE compatible
38
+ # No columns to choose from, just proceed with default analysis
39
+ return (
40
+ "FIF file detected. No need for time column selection. Default sampling frequency will be read from file.",
41
+ [],
42
+ "FIF file doesn't require further inspection."
43
+ )
44
+ elif file_ext == ".csv":
45
+ # Read a small portion of the CSV to determine columns
46
+ try:
47
+ df = pd.read_csv(file_path, nrows=5)
48
+ except Exception as e:
49
+ return f"Error reading CSV: {e}", [], "Could not read CSV preview."
50
+
51
+ cols = list(df.columns)
52
+ preview = df.head().to_markdown()
53
+ return (
54
+ "CSV file detected. Select a time column if available, or leave it blank and specify a default frequency.",
55
+ cols,
56
+ preview
57
+ )
58
+ else:
59
+ return "Unsupported file format.", [], "No preview available."
60
+
61
+
62
  def load_eeg_data(file_path, default_sfreq=256.0, time_col='time'):
63
  """
64
+ Load EEG data with flexibility.
65
+ If FIF: Use MNE's read_raw_fif directly.
66
+ If CSV:
67
+ - If time_col is given and present in the file, use it.
68
+ - Otherwise, assume default_sfreq.
69
  """
70
  _, file_ext = os.path.splitext(file_path)
71
  file_ext = file_ext.lower()
72
 
73
  if file_ext == '.fif':
74
  raw = mne.io.read_raw_fif(file_path, preload=True)
75
+
76
  elif file_ext == '.csv':
77
  df = pd.read_csv(file_path)
78
 
79
+ # If time_col is specified and in df, use it to compute sfreq
80
+ if time_col and time_col in df.columns:
 
 
 
 
 
 
 
81
  time = df[time_col].values
82
  data_df = df.drop(columns=[time_col])
83
+
84
+ # Drop non-numeric columns
85
+ for col in data_df.columns:
86
+ if not pd.api.types.is_numeric_dtype(data_df[col]):
87
+ data_df = data_df.drop(columns=[col])
88
+
89
  if len(time) < 2:
90
+ # Not enough time points, fallback to default_sfreq
91
+ sfreq = default_sfreq
92
+ else:
93
+ # Compute sfreq from time
94
+ sfreq = 1.0 / np.mean(np.diff(time))
95
  else:
96
+ # No time column used, assume default_sfreq
97
+ # Drop non-numeric columns
98
+ for col in df.columns:
99
+ if not pd.api.types.is_numeric_dtype(df[col]):
100
+ df = df.drop(columns=[col])
101
  data_df = df
102
+ sfreq = default_sfreq
103
 
 
104
  ch_names = list(data_df.columns)
105
  data = data_df.values.T # shape: (n_channels, n_samples)
106
 
 
107
  ch_types = ['eeg'] * len(ch_names)
108
  info = mne.create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
 
109
  raw = mne.io.RawArray(data, info)
110
+
111
  else:
112
+ raise ValueError("Unsupported file format. Provide a FIF or CSV file.")
113
+
114
  return raw
115
 
116
+ def analyze_eeg(file, default_sfreq, time_col):
117
+ if file is None:
118
+ return "No file uploaded."
119
  raw = load_eeg_data(file.name, default_sfreq=float(default_sfreq), time_col=time_col)
120
 
121
  psd, freqs = mne.time_frequency.psd_welch(raw, fmin=1, fmax=40)
 
132
 
133
  Provide a concise, user-friendly interpretation of these findings in simple terms.
134
  """
 
135
  inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
136
  outputs = model.generate(
137
  inputs, max_length=200, do_sample=True, top_k=50, top_p=0.95
138
  )
139
  summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
140
  return summary
141
 
142
+
143
+ #########################
144
+ # BUILD THE GRADIO INTERFACE
145
+ #########################
146
+
147
+ # Step 1: Inspect file
148
+ def preview_file(file):
149
+ msg, cols, preview = inspect_file(file)
150
+ return msg, gr.Dropdown.update(choices=cols, value=None), preview
151
+
152
+ with gr.Blocks() as demo:
153
+ gr.Markdown("# NeuroNarrative-Lite: EEG Summary with Flexible Preprocessing")
154
+ gr.Markdown(
155
+ "Upload an EEG file (FIF or CSV). If it's CSV, we will inspect the file and let you choose a time column. "
156
+ "If no suitable time column is found, leave it blank and provide a default sampling frequency."
157
  )
158
+
159
+ file_input = gr.File(label="Upload your EEG data (FIF or CSV)")
160
+ preview_button = gr.Button("Inspect File")
161
+ msg_output = gr.Markdown()
162
+ cols_dropdown = gr.Dropdown(label="Select Time Column (optional)", interactive=True)
163
+ preview_output = gr.Markdown()
164
+
165
+ preview_button.click(preview_file, inputs=[file_input], outputs=[msg_output, cols_dropdown, preview_output])
166
+
167
+ default_sfreq_input = gr.Textbox(label="Default Sampling Frequency (Hz) if no time column", value="256")
168
+ analyze_button = gr.Button("Run Analysis")
169
+ result_output = gr.Textbox(label="Analysis Summary")
170
+
171
+ analyze_button.click(analyze_eeg,
172
+ inputs=[file_input, default_sfreq_input, cols_dropdown],
173
+ outputs=[result_output])
174
 
175
  if __name__ == "__main__":
176
+ demo.launch()