Rogerjs commited on
Commit
c48497c
·
verified ·
1 Parent(s): 372a42a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -0
app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import mne
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+ import torch
5
+
6
+ # Load open-source LLM (no training needed)
7
+ model_name = "tiiuae/falcon-7b-instruct"
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16, device_map="auto")
10
+
11
+ def process_eeg(file):
12
+ # Load EEG data using MNE
13
+ raw = mne.io.read_raw_fif(file.name, preload=True)
14
+ # Compute some features (e.g., average band powers)
15
+ psd, freqs = mne.time_frequency.psd_welch(raw, fmin=1, fmax=40)
16
+ alpha_power = compute_band_power(psd, freqs, 8, 12)
17
+ beta_power = compute_band_power(psd, freqs, 13, 30)
18
+ # Create a human-readable summary of features
19
+ data_summary = f"Alpha power: {alpha_power}, Beta power: {beta_power}. The data shows stable alpha rhythms and slightly elevated beta."
20
+
21
+ # Prompt the LLM
22
+ prompt = f"""You are a neuroscientist analyzing EEG features.
23
+ Data Summary: {data_summary}
24
+
25
+ Provide a concise, user-friendly interpretation of these findings."""
26
+
27
+ inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
28
+ outputs = model.generate(inputs, max_length=200, do_sample=True, top_k=50, top_p=0.95)
29
+ summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
30
+
31
+ return summary
32
+
33
+ iface = gr.Interface(
34
+ fn=process_eeg,
35
+ inputs=gr.File(label="Upload your EEG data (FIF format)"),
36
+ outputs="text",
37
+ title="NeuroNarrative-Lite: EEG Summary",
38
+ description="Upload EEG data to receive a text-based summary from an open-source LLM. No training required!"
39
+ )
40
+
41
+ if __name__ == "__main__":
42
+ iface.launch()