import gradio as gr import mne from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load open-source LLM (no training needed) model_name = "tiiuae/falcon-7b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16, device_map="auto") def process_eeg(file): # Load EEG data using MNE raw = mne.io.read_raw_fif(file.name, preload=True) # Compute some features (e.g., average band powers) psd, freqs = mne.time_frequency.psd_welch(raw, fmin=1, fmax=40) alpha_power = compute_band_power(psd, freqs, 8, 12) beta_power = compute_band_power(psd, freqs, 13, 30) # Create a human-readable summary of features data_summary = f"Alpha power: {alpha_power}, Beta power: {beta_power}. The data shows stable alpha rhythms and slightly elevated beta." # Prompt the LLM prompt = f"""You are a neuroscientist analyzing EEG features. Data Summary: {data_summary} Provide a concise, user-friendly interpretation of these findings.""" inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device) outputs = model.generate(inputs, max_length=200, do_sample=True, top_k=50, top_p=0.95) summary = tokenizer.decode(outputs[0], skip_special_tokens=True) return summary iface = gr.Interface( fn=process_eeg, inputs=gr.File(label="Upload your EEG data (FIF format)"), outputs="text", title="NeuroNarrative-Lite: EEG Summary", description="Upload EEG data to receive a text-based summary from an open-source LLM. No training required!" ) if __name__ == "__main__": iface.launch()