Rohan5manza commited on
Commit
dd9194f
1 Parent(s): 40617c0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -60
app.py CHANGED
@@ -1,63 +1,44 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient(model="Rohan5manza/sentiment_analysis")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a financial advisor.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
61
 
62
- if __name__ == "__main__":
63
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+ from peft import PeftModel
3
+ from unsloth import FastLanguageModel
4
+ import torch
5
+
6
+
7
+ max_seq_length = 4096 # Choose any! We auto support RoPE Scaling internally!
8
+ dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
9
+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
10
+
11
+ # 4bit pre quantized models we support for 4x faster downloading + no OOMs.
12
+ fourbit_models = [
13
+ "unsloth/llama-3-8b-Instruct-bnb-4bit",
14
+ ]
15
+
16
+ model, tokenizer = FastLanguageModel.from_pretrained(
17
+ model_name = "unsloth/llama-3-8b-Instruct-bnb-4bit",
18
+ max_seq_length = max_seq_length,
19
+ dtype = dtype,
20
+ load_in_4bit = load_in_4bit,
21
+ # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  )
23
 
24
 
25
+ # Load the base model and apply LoRA adapters
26
+ from transformers import AutoModel
27
+ adapter_model = AutoModel.from_pretrained("Rohan5manza/sentiment_analysis")
28
+
29
+ model = PeftModel.from_pretrained(model, adapter_model)
30
+
31
+ def generate_response(prompt):
32
+ inputs = tokenizer(prompt, return_tensors="pt")
33
+ outputs = model.generate(**inputs)
34
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
35
+
36
+ # Example Gradio or Streamlit interface for deploying
37
+ import gradio as gr
38
+
39
+ def gradio_interface(prompt):
40
+ response = generate_response(prompt)
41
+ return response
42
+
43
+ iface = gr.Interface(fn=gradio_interface, inputs="text", outputs="text")
44
+ iface.launch()