RohanAi commited on
Commit
d600eb0
·
1 Parent(s): a9e1725

Create Network.py

Browse files
Files changed (1) hide show
  1. Network.py +33 -0
Network.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from keras.layers import Input, Conv2D, Conv2DTranspose, Concatenate
2
+ from keras.applications.vgg19 import VGG19
3
+ from keras.models import Model
4
+
5
+ def build_vgg():
6
+ vgg_model = VGG19(include_top=False, weights='imagenet')
7
+ vgg_model.trainable = False
8
+ return Model(inputs=vgg_model.input, outputs=vgg_model.get_layer('block3_conv4').output)
9
+
10
+ def build_mbllen(input_shape):
11
+
12
+ def EM(input, kernal_size, channel):
13
+ conv_1 = Conv2D(channel, (3, 3), activation='relu', padding='same', data_format='channels_last')(input)
14
+ conv_2 = Conv2D(channel, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_1)
15
+ conv_3 = Conv2D(channel*2, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_2)
16
+ conv_4 = Conv2D(channel*4, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_3)
17
+ conv_5 = Conv2DTranspose(channel*2, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_4)
18
+ conv_6 = Conv2DTranspose(channel, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_5)
19
+ res = Conv2DTranspose(3, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_6)
20
+ return res
21
+
22
+ inputs = Input(shape=input_shape)
23
+ FEM = Conv2D(32, (3, 3), activation='relu', padding='same', data_format='channels_last')(inputs)
24
+ EM_com = EM(FEM, 5, 8)
25
+
26
+ for j in range(3):
27
+ for i in range(0, 3):
28
+ FEM = Conv2D(32, (3, 3), activation='relu', padding='same', data_format='channels_last')(FEM)
29
+ EM1 = EM(FEM, 5, 8)
30
+ EM_com = Concatenate(axis=3)([EM_com, EM1])
31
+
32
+ outputs = Conv2D(3, (1, 1), activation='relu', padding='same', data_format='channels_last')(EM_com)
33
+ return Model(inputs, outputs)