Spaces:
Sleeping
Sleeping
File size: 4,223 Bytes
0adb0e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
from flask import Flask, render_template, request, jsonify
#from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import T5Tokenizer, T5ForConditionalGeneration
import numpy as np
from transformers import AdamW
import pandas as pd
import torch
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.nn.utils.rnn import pad_sequence
MODEL_NAME='t5-base'
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
INPUT_MAX_LEN = 512
OUTPUT_MAX_LEN = 512
#tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
#model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, model_max_length=512)
app = Flask(__name__)
app.jinja_env.auto_reload = True
app.config['TEMPLATES_AUTO_RELOAD'] = True
@app.route("/")
def index():
return render_template('chat.html')
@app.route("/get", methods=["GET", "POST"])
def chat():
msg = request.form["msg"]
input = msg
return get_Chat_response(input)
class T5Model(pl.LightningModule):
def __init__(self):
super().__init__()
self.model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME, return_dict = True)
def forward(self, input_ids, attention_mask, labels=None):
output = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels
)
return output.loss, output.logits
def training_step(self, batch, batch_idx):
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
labels= batch["target"]
loss, logits = self(input_ids , attention_mask, labels)
self.log("train_loss", loss, prog_bar=True, logger=True)
return {'loss': loss}
def validation_step(self, batch, batch_idx):
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
labels= batch["target"]
loss, logits = self(input_ids, attention_mask, labels)
self.log("val_loss", loss, prog_bar=True, logger=True)
return {'val_loss': loss}
def configure_optimizers(self):
return AdamW(self.parameters(), lr=0.0001)
train_model = T5Model.load_from_checkpoint('best-model-version.ckpt',map_location=DEVICE)
train_model.freeze()
def get_Chat_response(question):
inputs_encoding = tokenizer(
question,
add_special_tokens=True,
max_length= INPUT_MAX_LEN,
padding = 'max_length',
truncation='only_first',
return_attention_mask=True,
return_tensors="pt"
)
generate_ids = train_model.model.generate(
input_ids = inputs_encoding["input_ids"],
attention_mask = inputs_encoding["attention_mask"],
max_length = INPUT_MAX_LEN,
num_beams = 4,
num_return_sequences = 1,
no_repeat_ngram_size=2,
early_stopping=True,
)
preds = [
tokenizer.decode(gen_id,
skip_special_tokens=True,
clean_up_tokenization_spaces=True)
for gen_id in generate_ids
]
return "".join(preds)
#def get_Chat_response(text):
#
# # Let's chat for 5 lines
# for step in range(5):
# # encode the new user input, add the eos_token and return a tensor in Pytorch
# new_user_input_ids = tokenizer.encode(str(text) + tokenizer.eos_token, return_tensors='pt')
#
# # append the new user input tokens to the chat history
# bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
#
# # generated a response while limiting the total chat history to 1000 tokens,
# chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
#
# # pretty print last ouput tokens from bot
# return tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
if __name__ == '__main__':
app.run(debug=True) |