Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,132 +1,132 @@
|
|
1 |
-
from flask import Flask, render_template, request, jsonify
|
2 |
-
#from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
from transformers import AdamW
|
7 |
-
import pandas as pd
|
8 |
-
import torch
|
9 |
-
import pytorch_lightning as pl
|
10 |
-
from pytorch_lightning.callbacks import ModelCheckpoint
|
11 |
-
from torch.nn.utils.rnn import pad_sequence
|
12 |
-
|
13 |
-
MODEL_NAME='t5-base'
|
14 |
-
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
15 |
-
INPUT_MAX_LEN = 512
|
16 |
-
OUTPUT_MAX_LEN = 512
|
17 |
-
|
18 |
-
#tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
19 |
-
#model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
20 |
-
|
21 |
-
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, model_max_length=512)
|
22 |
-
|
23 |
-
app = Flask(__name__)
|
24 |
-
app.jinja_env.auto_reload = True
|
25 |
-
app.config['TEMPLATES_AUTO_RELOAD'] = True
|
26 |
-
|
27 |
-
|
28 |
-
@app.route("/")
|
29 |
-
def index():
|
30 |
-
return render_template('chat.html')
|
31 |
-
|
32 |
-
|
33 |
-
@app.route("/get", methods=["GET", "POST"])
|
34 |
-
def chat():
|
35 |
-
msg = request.form["msg"]
|
36 |
-
input = msg
|
37 |
-
return get_Chat_response(input)
|
38 |
-
|
39 |
-
class T5Model(pl.LightningModule):
|
40 |
-
|
41 |
-
def __init__(self):
|
42 |
-
super().__init__()
|
43 |
-
self.model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME, return_dict = True)
|
44 |
-
|
45 |
-
|
46 |
-
def forward(self, input_ids, attention_mask, labels=None):
|
47 |
-
|
48 |
-
output = self.model(
|
49 |
-
input_ids=input_ids,
|
50 |
-
attention_mask=attention_mask,
|
51 |
-
labels=labels
|
52 |
-
)
|
53 |
-
return output.loss, output.logits
|
54 |
-
|
55 |
-
def training_step(self, batch, batch_idx):
|
56 |
-
|
57 |
-
input_ids = batch["input_ids"]
|
58 |
-
attention_mask = batch["attention_mask"]
|
59 |
-
labels= batch["target"]
|
60 |
-
loss, logits = self(input_ids , attention_mask, labels)
|
61 |
-
|
62 |
-
|
63 |
-
self.log("train_loss", loss, prog_bar=True, logger=True)
|
64 |
-
|
65 |
-
return {'loss': loss}
|
66 |
-
|
67 |
-
def validation_step(self, batch, batch_idx):
|
68 |
-
input_ids = batch["input_ids"]
|
69 |
-
attention_mask = batch["attention_mask"]
|
70 |
-
labels= batch["target"]
|
71 |
-
loss, logits = self(input_ids, attention_mask, labels)
|
72 |
-
|
73 |
-
self.log("val_loss", loss, prog_bar=True, logger=True)
|
74 |
-
|
75 |
-
return {'val_loss': loss}
|
76 |
-
|
77 |
-
def configure_optimizers(self):
|
78 |
-
return AdamW(self.parameters(), lr=0.0001)
|
79 |
-
|
80 |
-
train_model = T5Model.load_from_checkpoint('best-model-version.ckpt',map_location=DEVICE)
|
81 |
-
train_model.freeze()
|
82 |
-
|
83 |
-
def get_Chat_response(question):
|
84 |
-
|
85 |
-
inputs_encoding = tokenizer(
|
86 |
-
question,
|
87 |
-
add_special_tokens=True,
|
88 |
-
max_length= INPUT_MAX_LEN,
|
89 |
-
padding = 'max_length',
|
90 |
-
truncation='only_first',
|
91 |
-
return_attention_mask=True,
|
92 |
-
return_tensors="pt"
|
93 |
-
)
|
94 |
-
|
95 |
-
|
96 |
-
generate_ids = train_model.model.generate(
|
97 |
-
input_ids = inputs_encoding["input_ids"],
|
98 |
-
attention_mask = inputs_encoding["attention_mask"],
|
99 |
-
max_length = INPUT_MAX_LEN,
|
100 |
-
num_beams = 4,
|
101 |
-
num_return_sequences = 1,
|
102 |
-
no_repeat_ngram_size=2,
|
103 |
-
early_stopping=True,
|
104 |
-
)
|
105 |
-
|
106 |
-
preds = [
|
107 |
-
tokenizer.decode(gen_id,
|
108 |
-
skip_special_tokens=True,
|
109 |
-
clean_up_tokenization_spaces=True)
|
110 |
-
for gen_id in generate_ids
|
111 |
-
]
|
112 |
-
|
113 |
-
return "".join(preds)
|
114 |
-
|
115 |
-
#def get_Chat_response(text):
|
116 |
-
#
|
117 |
-
# # Let's chat for 5 lines
|
118 |
-
# for step in range(5):
|
119 |
-
# # encode the new user input, add the eos_token and return a tensor in Pytorch
|
120 |
-
# new_user_input_ids = tokenizer.encode(str(text) + tokenizer.eos_token, return_tensors='pt')
|
121 |
-
#
|
122 |
-
# # append the new user input tokens to the chat history
|
123 |
-
# bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
|
124 |
-
#
|
125 |
-
# # generated a response while limiting the total chat history to 1000 tokens,
|
126 |
-
# chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
127 |
-
#
|
128 |
-
# # pretty print last ouput tokens from bot
|
129 |
-
# return tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
130 |
-
|
131 |
-
if __name__ == '__main__':
|
132 |
app.run(debug=True)
|
|
|
1 |
+
from flask import Flask, render_template, request, jsonify
|
2 |
+
#from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
4 |
+
|
5 |
+
#import numpy as np
|
6 |
+
from transformers import AdamW
|
7 |
+
#import pandas as pd
|
8 |
+
import torch
|
9 |
+
import pytorch_lightning as pl
|
10 |
+
from pytorch_lightning.callbacks import ModelCheckpoint
|
11 |
+
from torch.nn.utils.rnn import pad_sequence
|
12 |
+
|
13 |
+
MODEL_NAME='t5-base'
|
14 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
15 |
+
INPUT_MAX_LEN = 512
|
16 |
+
OUTPUT_MAX_LEN = 512
|
17 |
+
|
18 |
+
#tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
19 |
+
#model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
20 |
+
|
21 |
+
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, model_max_length=512)
|
22 |
+
|
23 |
+
app = Flask(__name__)
|
24 |
+
app.jinja_env.auto_reload = True
|
25 |
+
app.config['TEMPLATES_AUTO_RELOAD'] = True
|
26 |
+
|
27 |
+
|
28 |
+
@app.route("/")
|
29 |
+
def index():
|
30 |
+
return render_template('chat.html')
|
31 |
+
|
32 |
+
|
33 |
+
@app.route("/get", methods=["GET", "POST"])
|
34 |
+
def chat():
|
35 |
+
msg = request.form["msg"]
|
36 |
+
input = msg
|
37 |
+
return get_Chat_response(input)
|
38 |
+
|
39 |
+
class T5Model(pl.LightningModule):
|
40 |
+
|
41 |
+
def __init__(self):
|
42 |
+
super().__init__()
|
43 |
+
self.model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME, return_dict = True)
|
44 |
+
|
45 |
+
|
46 |
+
def forward(self, input_ids, attention_mask, labels=None):
|
47 |
+
|
48 |
+
output = self.model(
|
49 |
+
input_ids=input_ids,
|
50 |
+
attention_mask=attention_mask,
|
51 |
+
labels=labels
|
52 |
+
)
|
53 |
+
return output.loss, output.logits
|
54 |
+
|
55 |
+
def training_step(self, batch, batch_idx):
|
56 |
+
|
57 |
+
input_ids = batch["input_ids"]
|
58 |
+
attention_mask = batch["attention_mask"]
|
59 |
+
labels= batch["target"]
|
60 |
+
loss, logits = self(input_ids , attention_mask, labels)
|
61 |
+
|
62 |
+
|
63 |
+
self.log("train_loss", loss, prog_bar=True, logger=True)
|
64 |
+
|
65 |
+
return {'loss': loss}
|
66 |
+
|
67 |
+
def validation_step(self, batch, batch_idx):
|
68 |
+
input_ids = batch["input_ids"]
|
69 |
+
attention_mask = batch["attention_mask"]
|
70 |
+
labels= batch["target"]
|
71 |
+
loss, logits = self(input_ids, attention_mask, labels)
|
72 |
+
|
73 |
+
self.log("val_loss", loss, prog_bar=True, logger=True)
|
74 |
+
|
75 |
+
return {'val_loss': loss}
|
76 |
+
|
77 |
+
def configure_optimizers(self):
|
78 |
+
return AdamW(self.parameters(), lr=0.0001)
|
79 |
+
|
80 |
+
train_model = T5Model.load_from_checkpoint('best-model-version.ckpt',map_location=DEVICE)
|
81 |
+
train_model.freeze()
|
82 |
+
|
83 |
+
def get_Chat_response(question):
|
84 |
+
|
85 |
+
inputs_encoding = tokenizer(
|
86 |
+
question,
|
87 |
+
add_special_tokens=True,
|
88 |
+
max_length= INPUT_MAX_LEN,
|
89 |
+
padding = 'max_length',
|
90 |
+
truncation='only_first',
|
91 |
+
return_attention_mask=True,
|
92 |
+
return_tensors="pt"
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
generate_ids = train_model.model.generate(
|
97 |
+
input_ids = inputs_encoding["input_ids"],
|
98 |
+
attention_mask = inputs_encoding["attention_mask"],
|
99 |
+
max_length = INPUT_MAX_LEN,
|
100 |
+
num_beams = 4,
|
101 |
+
num_return_sequences = 1,
|
102 |
+
no_repeat_ngram_size=2,
|
103 |
+
early_stopping=True,
|
104 |
+
)
|
105 |
+
|
106 |
+
preds = [
|
107 |
+
tokenizer.decode(gen_id,
|
108 |
+
skip_special_tokens=True,
|
109 |
+
clean_up_tokenization_spaces=True)
|
110 |
+
for gen_id in generate_ids
|
111 |
+
]
|
112 |
+
|
113 |
+
return "".join(preds)
|
114 |
+
|
115 |
+
#def get_Chat_response(text):
|
116 |
+
#
|
117 |
+
# # Let's chat for 5 lines
|
118 |
+
# for step in range(5):
|
119 |
+
# # encode the new user input, add the eos_token and return a tensor in Pytorch
|
120 |
+
# new_user_input_ids = tokenizer.encode(str(text) + tokenizer.eos_token, return_tensors='pt')
|
121 |
+
#
|
122 |
+
# # append the new user input tokens to the chat history
|
123 |
+
# bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
|
124 |
+
#
|
125 |
+
# # generated a response while limiting the total chat history to 1000 tokens,
|
126 |
+
# chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
127 |
+
#
|
128 |
+
# # pretty print last ouput tokens from bot
|
129 |
+
# return tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
130 |
+
|
131 |
+
if __name__ == '__main__':
|
132 |
app.run(debug=True)
|