Spaces:
Sleeping
Sleeping
Roman Castagné
commited on
Commit
·
4714d24
0
Parent(s):
Initial commit
Browse files- .gitignore +2 -0
- app.py +72 -0
- requirements.txt +3 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
.vscode/
|
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer, DataCollatorForLanguageModeling
|
4 |
+
|
5 |
+
|
6 |
+
ds = datasets.load_dataset(
|
7 |
+
"oscar-corpus/OSCAR-2109", "deduplicated_en", streaming=True, use_auth_token=True, split="train"
|
8 |
+
)
|
9 |
+
ds = ds.shuffle(buffer_size=1000)
|
10 |
+
ds = iter(ds)
|
11 |
+
|
12 |
+
model_name = "../../checkpoints/artificial_pretraining/mlm_en_100k"
|
13 |
+
|
14 |
+
model = AutoModelForMaskedLM.from_pretrained(model_name)
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
+
|
17 |
+
collate_fn = DataCollatorForLanguageModeling(tokenizer)
|
18 |
+
|
19 |
+
|
20 |
+
with gr.Blocks() as demo:
|
21 |
+
inputs_oscar = gr.TextArea(
|
22 |
+
placeholder="Type a sentence or click the button below to get a random sentence from the English OSCAR corpus",
|
23 |
+
label="Input",
|
24 |
+
num_lines=6,
|
25 |
+
interactive=True,
|
26 |
+
)
|
27 |
+
next_button = gr.Button("Random OSCAR sentence")
|
28 |
+
next_button.click(fn=lambda: next(ds)["text"], outputs=inputs_oscar)
|
29 |
+
|
30 |
+
masked_text = gr.Textbox(label="Masked sentence")
|
31 |
+
|
32 |
+
labels_and_outputs = []
|
33 |
+
with gr.Row():
|
34 |
+
for _ in range(4):
|
35 |
+
with gr.Column():
|
36 |
+
labels_and_outputs.append(gr.Textbox(label="Label"))
|
37 |
+
labels_and_outputs.append(gr.Label(num_top_classes=5, show_label=False))
|
38 |
+
with gr.Row():
|
39 |
+
for _ in range(4):
|
40 |
+
with gr.Column():
|
41 |
+
labels_and_outputs.append(gr.Textbox(label="Label"))
|
42 |
+
labels_and_outputs.append(gr.Label(num_top_classes=5, show_label=False))
|
43 |
+
|
44 |
+
def model_inputs_and_outputs(example):
|
45 |
+
token_ids = tokenizer(example, return_tensors="pt", truncation=True, max_length=128)
|
46 |
+
model_inputs = collate_fn((token_ids,))
|
47 |
+
model_inputs = {k: v[0] for k, v in model_inputs.items()}
|
48 |
+
masked_tokens = tokenizer.batch_decode(model_inputs["input_ids"])[0]
|
49 |
+
|
50 |
+
original_labels = [tokenizer.convert_ids_to_tokens([id])[0] for id in model_inputs["labels"][0] if id != -100]
|
51 |
+
|
52 |
+
out = model(**model_inputs)
|
53 |
+
all_logits = out.logits[model_inputs["labels"] != -100].softmax(-1)
|
54 |
+
all_outputs = [
|
55 |
+
{tokenizer.convert_ids_to_tokens([id])[0]: val.item() for id, val in enumerate(logits)}
|
56 |
+
for logits in all_logits
|
57 |
+
]
|
58 |
+
out_dict = {masked_text: masked_tokens}
|
59 |
+
for i in range(len(labels_and_outputs) // 2):
|
60 |
+
try:
|
61 |
+
out_dict[labels_and_outputs[2 * i]] = original_labels[i]
|
62 |
+
out_dict[labels_and_outputs[2 * i + 1]] = all_outputs[i]
|
63 |
+
except:
|
64 |
+
out_dict[labels_and_outputs[2 * i]] = ""
|
65 |
+
out_dict[labels_and_outputs[2 * i + 1]] = {}
|
66 |
+
return out_dict
|
67 |
+
|
68 |
+
button = gr.Button("Predict tokens")
|
69 |
+
button.click(fn=model_inputs_and_outputs, inputs=inputs_oscar, outputs=[masked_text] + labels_and_outputs)
|
70 |
+
|
71 |
+
|
72 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
datasets==2.4.0
|
2 |
+
gradio==3.19.1
|
3 |
+
transformers==4.22.0.dev0
|