import gradio as gr import cv2 from mtcnn.mtcnn import MTCNN import tensorflow as tf import tensorflow_addons import numpy as np import os import zipfile local_zip = "FINAL-EFFICIENTNETV2-B0.zip" zip_ref = zipfile.ZipFile(local_zip, 'r') zip_ref.extractall('FINAL-EFFICIENTNETV2-B0') zip_ref.close() local_zip = "FINAL-EFFICIENTNETV2-S.zip" zip_ref = zipfile.ZipFile(local_zip, 'r') zip_ref.extractall('FINAL-EFFICIENTNETV2-S') zip_ref.close() local_zip = "deepfakes-test-images.zip" zip_ref = zipfile.ZipFile(local_zip, 'r') zip_ref.extractall('deepfakes-test-images') zip_ref.close() model_b0 = tf.keras.models.load_model("FINAL-EFFICIENTNETV2-B0") model_s = tf.keras.models.load_model("FINAL-EFFICIENTNETV2-S") detector = MTCNN() def deepfakespredict(select_model, input_img ): model = [] labels = ['real', 'fake'] pred = [0, 0] if select_model == "EfficientNetV2-B0": model = model_b0 elif select_model == "EfficientNetV2-B0": model = model_s text ="" face = detector.detect_faces(input_img) if len(face) > 0: x, y, width, height = face[0]['box'] x2, y2 = x + width, y + height cv2.rectangle(input_img, (x, y), (x2, y2), (0, 255, 0), 2) face_image = input_img[y:y2, x:x2] face_image2 = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB) face_image3 = cv2.resize(face_image2, (224, 224)) face_image4 = face_image3/255 pred = model.predict(np.expand_dims(face_image4, axis=0))[0] if pred[1] >= 0.6: text = "The image is fake." elif pred[0] >= 0.6: text = "The image is real." else: text = "The image might be real or fake." else: text = "Face is not detected in the image." return text, input_img, {labels[i]: float(pred[i]) for i in range(2)} title="EfficientNetV2 Deepfakes Image Detector" description="This is a demo implementation of EfficientNetV2 Deepfakes Image Detector. To use it, simply upload your image, or click one of the examples to load them." examples = [ [],[ ['deepfakes-test-images/Fake-1.jpg'], ['deepfakes-test-images/Fake-2.jpg'], ['deepfakes-test-images/Fake-3.jpg'], ['deepfakes-test-images/Fake-4.jpg'], ['deepfakes-test-images/Fake-5.jpg'], ['deepfakes-test-images/Real-1.jpg'], ['deepfakes-test-images/Real-2.jpg'], ['deepfakes-test-images/Real-3.jpg'], ['deepfakes-test-images/Real-4.jpg'], ['deepfakes-test-images/Real-5.jpg'] ] ] gr.Interface(deepfakespredict, inputs = [gr.inputs.Radio(["EfficientNetV2-B0", "EfficientNetV2-S"], label = "Select model:"), "image"], outputs=["text", gr.outputs.Image(type="pil", label="Detected face"), gr.outputs.Label(num_top_classes=None, type="auto", label="Confidence")], title=title, description=description examples=examples ).launch()