File size: 4,979 Bytes
c88be80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78c19da
 
c88be80
 
78c19da
c88be80
 
 
78c19da
c88be80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78c19da
28dcf2b
78c19da
 
 
 
c88be80
 
78c19da
 
c88be80
 
 
 
 
78c19da
c88be80
 
 
 
 
 
78c19da
c88be80
 
fecade2
c88be80
387d1ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import gradio as gr
import requests
import datadog_api_client
from PIL import Image

def compare_face(frame1, frame2):
    url = "http://127.0.0.1:8080/compare_face"
    files = {'file1': open(frame1, 'rb'), 'file2': open(frame2, 'rb')}

    r = requests.post(url=url, files=files)

    html = None
    faces = None

    compare_result = r.json().get('compare_result')
    compare_similarity = r.json().get('compare_similarity')

    html = ("<table>"
                "<tr>"
                    "<th>Résultat de la comparaison</th>"
                    "<th>Valeur</th>"
                "</tr>"
                "<tr>"
                    "<td>Résultat</td>"
                    "<td>{compare_result}</td>"
                "</tr>"
                "<tr>"
                    "<td>Similarité</td>"
                    "<td>{compare_similarity}</td>"
                "</tr>"
                "</table>".format(compare_result=compare_result, compare_similarity=compare_similarity))

    try:
        image1 = Image.open(frame1)
        image2 = Image.open(frame2)

        face1 = None
        face2 = None

        if r.json().get('face1') is not None:
            face = r.json().get('face1')
            x1 = face.get('x1')
            y1 = face.get('y1')
            x2 = face.get('x2')
            y2 = face.get('y2')

            if x1 < 0:
                x1 = 0
            if y1 < 0:
                y1 = 0
            if x2 >= image1.width:
                x2 = image1.width - 1
            if y2 >= image1.height:
                y2 = image1.height - 1

            face1 = image1.crop((x1, y1, x2, y2))
            face_image_ratio = face1.width / float(face1.height)
            resized_w = int(face_image_ratio * 150)
            resized_h = 150

            face1 = face1.resize((int(resized_w), int(resized_h)))

        if r.json().get('face2') is not None:
            face = r.json().get('face2')
            x1 = face.get('x1')
            y1 = face.get('y1')
            x2 = face.get('x2')
            y2 = face.get('y2')

            if x1 < 0:
                x1 = 0
            if y1 < 0:
                y1 = 0
            if x2 >= image2.width:
                x2 = image2.width - 1
            if y2 >= image2.height:
                y2 = image2.height - 1

            face2 = image2.crop((x1, y1, x2, y2))
            face_image_ratio = face2.width / float(face2.height)
            resized_w = int(face_image_ratio * 150)
            resized_h = 150

            face2 = face2.resize((int(resized_w), int(resized_h)))

        if face1 is not None and face2 is not None:
            new_image = Image.new('RGB',(face1.width + face2.width + 10, 150), (80,80,80))

            new_image.paste(face1,(0,0))
            new_image.paste(face2,(face1.width + 10, 0))
            faces = new_image.copy()
        elif face1 is not None and face2 is None:
            new_image = Image.new('RGB',(face1.width + face1.width + 10, 150), (80,80,80))

            new_image.paste(face1,(0,0))
            faces = new_image.copy()
        elif face1 is None and face2 is not None:
            new_image = Image.new('RGB',(face2.width + face2.width + 10, 150), (80,80,80))

            new_image.paste(face2,(face2.width + 10, 0))
            faces = new_image.copy()

    except:
        pass

    return [faces, html]

with gr.Blocks() as demo:
    gr.Markdown(
        """
    # Ronaldodev - Détection de visage 
    
    Développeur FullStack & IA Enginneer !
    
    ##### Whatsap : +229 99653843
    ##### Explicit is better than implicit !
    """
    )
    with gr.TabItem("Reconnaissance Faciale"):
        
        with gr.Row():
            with gr.Column():
                compare_face_input1 = gr.Image(type='filepath')
                gr.Examples(['face_examples/1.jpg', 'face_examples/3.jpg', 'face_examples/5.jpg', 'face_examples/7.jpg', 'face_examples/9.jpg'], 
                            inputs=compare_face_input1)
                compare_face_button = gr.Button("Comparer les visages")
            with gr.Column():
                compare_face_input2 = gr.Image(type='filepath')
                gr.Examples(['face_examples/2.jpg', 'face_examples/4.jpg', 'face_examples/6.jpg', 'face_examples/8.jpg', 'face_examples/10.jpg'], 
                            inputs=compare_face_input2)
            with gr.Column():
                compare_face_output = gr.Image(type="pil").style(height=150)
                compare_result_output = gr.HTML(label='Résultat')

        compare_face_button.click(compare_face, inputs=[compare_face_input1, compare_face_input2], outputs=[compare_face_output, compare_result_output])
    gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fkby-ai%2FFaceRecognition"><img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fkby-ai%2FFaceRecognition&countColor=%23263759" /></a>')

demo.launch(server_name="0.0.0.0", server_port=7860)