Spaces:
Build error
Build error
File size: 9,284 Bytes
222619b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import os
os.environ["OMP_NUM_THREADS"] = "1"
from utils.multiprocess_utils import chunked_multiprocess_run
import random
import traceback
import json
from resemblyzer import VoiceEncoder
from tqdm import tqdm
from data_gen.tts.data_gen_utils import get_mel2ph, get_pitch, build_phone_encoder
from utils.hparams import set_hparams, hparams
import numpy as np
from utils.indexed_datasets import IndexedDatasetBuilder
from vocoders.base_vocoder import VOCODERS
import pandas as pd
class BinarizationError(Exception):
pass
class BaseBinarizer:
def __init__(self, processed_data_dir=None):
if processed_data_dir is None:
processed_data_dir = hparams['processed_data_dir']
self.processed_data_dirs = processed_data_dir.split(",")
self.binarization_args = hparams['binarization_args']
self.pre_align_args = hparams['pre_align_args']
self.forced_align = self.pre_align_args['forced_align']
tg_dir = None
if self.forced_align == 'mfa':
tg_dir = 'mfa_outputs'
if self.forced_align == 'kaldi':
tg_dir = 'kaldi_outputs'
self.item2txt = {}
self.item2ph = {}
self.item2wavfn = {}
self.item2tgfn = {}
self.item2spk = {}
for ds_id, processed_data_dir in enumerate(self.processed_data_dirs):
self.meta_df = pd.read_csv(f"{processed_data_dir}/metadata_phone.csv", dtype=str)
for r_idx, r in self.meta_df.iterrows():
item_name = raw_item_name = r['item_name']
if len(self.processed_data_dirs) > 1:
item_name = f'ds{ds_id}_{item_name}'
self.item2txt[item_name] = r['txt']
self.item2ph[item_name] = r['ph']
self.item2wavfn[item_name] = os.path.join(hparams['raw_data_dir'], 'wavs', os.path.basename(r['wav_fn']).split('_')[1])
self.item2spk[item_name] = r.get('spk', 'SPK1')
if len(self.processed_data_dirs) > 1:
self.item2spk[item_name] = f"ds{ds_id}_{self.item2spk[item_name]}"
if tg_dir is not None:
self.item2tgfn[item_name] = f"{processed_data_dir}/{tg_dir}/{raw_item_name}.TextGrid"
self.item_names = sorted(list(self.item2txt.keys()))
if self.binarization_args['shuffle']:
random.seed(1234)
random.shuffle(self.item_names)
@property
def train_item_names(self):
return self.item_names[hparams['test_num']+hparams['valid_num']:]
@property
def valid_item_names(self):
return self.item_names[0: hparams['test_num']+hparams['valid_num']] #
@property
def test_item_names(self):
return self.item_names[0: hparams['test_num']] # Audios for MOS testing are in 'test_ids'
def build_spk_map(self):
spk_map = set()
for item_name in self.item_names:
spk_name = self.item2spk[item_name]
spk_map.add(spk_name)
spk_map = {x: i for i, x in enumerate(sorted(list(spk_map)))}
assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map)
return spk_map
def item_name2spk_id(self, item_name):
return self.spk_map[self.item2spk[item_name]]
def _phone_encoder(self):
ph_set_fn = f"{hparams['binary_data_dir']}/phone_set.json"
ph_set = []
if hparams['reset_phone_dict'] or not os.path.exists(ph_set_fn):
for processed_data_dir in self.processed_data_dirs:
ph_set += [x.split(' ')[0] for x in open(f'{processed_data_dir}/dict.txt').readlines()]
ph_set = sorted(set(ph_set))
json.dump(ph_set, open(ph_set_fn, 'w'))
else:
ph_set = json.load(open(ph_set_fn, 'r'))
print("| phone set: ", ph_set)
return build_phone_encoder(hparams['binary_data_dir'])
def meta_data(self, prefix):
if prefix == 'valid':
item_names = self.valid_item_names
elif prefix == 'test':
item_names = self.test_item_names
else:
item_names = self.train_item_names
for item_name in item_names:
ph = self.item2ph[item_name]
txt = self.item2txt[item_name]
tg_fn = self.item2tgfn.get(item_name)
wav_fn = self.item2wavfn[item_name]
spk_id = self.item_name2spk_id(item_name)
yield item_name, ph, txt, tg_fn, wav_fn, spk_id
def process(self):
os.makedirs(hparams['binary_data_dir'], exist_ok=True)
self.spk_map = self.build_spk_map()
print("| spk_map: ", self.spk_map)
spk_map_fn = f"{hparams['binary_data_dir']}/spk_map.json"
json.dump(self.spk_map, open(spk_map_fn, 'w'))
self.phone_encoder = self._phone_encoder()
self.process_data('valid')
self.process_data('test')
self.process_data('train')
def process_data(self, prefix):
data_dir = hparams['binary_data_dir']
args = []
builder = IndexedDatasetBuilder(f'{data_dir}/{prefix}')
lengths = []
f0s = []
total_sec = 0
if self.binarization_args['with_spk_embed']:
voice_encoder = VoiceEncoder().cuda()
meta_data = list(self.meta_data(prefix))
for m in meta_data:
args.append(list(m) + [self.phone_encoder, self.binarization_args])
num_workers = int(os.getenv('N_PROC', os.cpu_count() // 3))
for f_id, (_, item) in enumerate(
zip(tqdm(meta_data), chunked_multiprocess_run(self.process_item, args, num_workers=num_workers))):
if item is None:
continue
item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) \
if self.binarization_args['with_spk_embed'] else None
if not self.binarization_args['with_wav'] and 'wav' in item:
print("del wav")
del item['wav']
builder.add_item(item)
lengths.append(item['len'])
total_sec += item['sec']
if item.get('f0') is not None:
f0s.append(item['f0'])
builder.finalize()
np.save(f'{data_dir}/{prefix}_lengths.npy', lengths)
if len(f0s) > 0:
f0s = np.concatenate(f0s, 0)
f0s = f0s[f0s != 0]
np.save(f'{data_dir}/{prefix}_f0s_mean_std.npy', [np.mean(f0s).item(), np.std(f0s).item()])
print(f"| {prefix} total duration: {total_sec:.3f}s")
@classmethod
def process_item(cls, item_name, ph, txt, tg_fn, wav_fn, spk_id, encoder, binarization_args):
if hparams['vocoder'] in VOCODERS:
wav, mel = VOCODERS[hparams['vocoder']].wav2spec(wav_fn)
else:
wav, mel = VOCODERS[hparams['vocoder'].split('.')[-1]].wav2spec(wav_fn)
res = {
'item_name': item_name, 'txt': txt, 'ph': ph, 'mel': mel, 'wav': wav, 'wav_fn': wav_fn,
'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0], 'spk_id': spk_id
}
try:
if binarization_args['with_f0']:
cls.get_pitch(wav, mel, res)
if binarization_args['with_f0cwt']:
cls.get_f0cwt(res['f0'], res)
if binarization_args['with_txt']:
try:
phone_encoded = res['phone'] = encoder.encode(ph)
except:
traceback.print_exc()
raise BinarizationError(f"Empty phoneme")
if binarization_args['with_align']:
cls.get_align(tg_fn, ph, mel, phone_encoded, res)
except BinarizationError as e:
print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {wav_fn}")
return None
return res
@staticmethod
def get_align(tg_fn, ph, mel, phone_encoded, res):
if tg_fn is not None and os.path.exists(tg_fn):
mel2ph, dur = get_mel2ph(tg_fn, ph, mel, hparams)
else:
raise BinarizationError(f"Align not found")
if mel2ph.max() - 1 >= len(phone_encoded):
raise BinarizationError(
f"Align does not match: mel2ph.max() - 1: {mel2ph.max() - 1}, len(phone_encoded): {len(phone_encoded)}")
res['mel2ph'] = mel2ph
res['dur'] = dur
@staticmethod
def get_pitch(wav, mel, res):
f0, pitch_coarse = get_pitch(wav, mel, hparams)
if sum(f0) == 0:
raise BinarizationError("Empty f0")
res['f0'] = f0
res['pitch'] = pitch_coarse
@staticmethod
def get_f0cwt(f0, res):
from utils.cwt import get_cont_lf0, get_lf0_cwt
uv, cont_lf0_lpf = get_cont_lf0(f0)
logf0s_mean_org, logf0s_std_org = np.mean(cont_lf0_lpf), np.std(cont_lf0_lpf)
cont_lf0_lpf_norm = (cont_lf0_lpf - logf0s_mean_org) / logf0s_std_org
Wavelet_lf0, scales = get_lf0_cwt(cont_lf0_lpf_norm)
if np.any(np.isnan(Wavelet_lf0)):
raise BinarizationError("NaN CWT")
res['cwt_spec'] = Wavelet_lf0
res['cwt_scales'] = scales
res['f0_mean'] = logf0s_mean_org
res['f0_std'] = logf0s_std_org
if __name__ == "__main__":
set_hparams()
BaseBinarizer().process()
|