Spaces:
Build error
Build error
import json | |
import os | |
import random | |
import re | |
import traceback | |
from collections import Counter | |
from functools import partial | |
import librosa | |
from tqdm import tqdm | |
from data_gen.tts.txt_processors.base_text_processor import get_txt_processor_cls | |
from data_gen.tts.wav_processors.base_processor import get_wav_processor_cls | |
from utils.hparams import hparams | |
from utils.multiprocess_utils import multiprocess_run_tqdm | |
from utils.os_utils import link_file, move_file, remove_file | |
from data_gen.tts.data_gen_utils import is_sil_phoneme, build_token_encoder | |
class BasePreprocessor: | |
def __init__(self): | |
self.preprocess_args = hparams['preprocess_args'] | |
txt_processor = self.preprocess_args['txt_processor'] | |
self.txt_processor = get_txt_processor_cls(txt_processor) | |
self.raw_data_dir = hparams['raw_data_dir'] | |
self.processed_dir = hparams['processed_data_dir'] | |
self.spk_map_fn = f"{self.processed_dir}/spk_map.json" | |
def meta_data(self): | |
""" | |
:return: {'item_name': Str, 'wav_fn': Str, 'txt': Str, 'spk_name': Str, 'txt_loader': None or Func} | |
""" | |
raise NotImplementedError | |
def process(self): | |
processed_dir = self.processed_dir | |
wav_processed_tmp_dir = f'{processed_dir}/processed_tmp' | |
remove_file(wav_processed_tmp_dir) | |
os.makedirs(wav_processed_tmp_dir, exist_ok=True) | |
wav_processed_dir = f'{processed_dir}/{self.wav_processed_dirname}' | |
remove_file(wav_processed_dir) | |
os.makedirs(wav_processed_dir, exist_ok=True) | |
meta_data = list(tqdm(self.meta_data(), desc='Load meta data')) | |
item_names = [d['item_name'] for d in meta_data] | |
assert len(item_names) == len(set(item_names)), 'Key `item_name` should be Unique.' | |
# preprocess data | |
phone_list = [] | |
word_list = [] | |
spk_names = set() | |
process_item = partial(self.preprocess_first_pass, | |
txt_processor=self.txt_processor, | |
wav_processed_dir=wav_processed_dir, | |
wav_processed_tmp=wav_processed_tmp_dir, | |
preprocess_args=self.preprocess_args) | |
items = [] | |
args = [{ | |
'item_name': item_raw['item_name'], | |
'txt_raw': item_raw['txt'], | |
'wav_fn': item_raw['wav_fn'], | |
'txt_loader': item_raw.get('txt_loader'), | |
'others': item_raw.get('others', None) | |
} for item_raw in meta_data] | |
for item_, (item_id, item) in zip(meta_data, multiprocess_run_tqdm(process_item, args, desc='Preprocess')): | |
if item is not None: | |
item_.update(item) | |
item = item_ | |
if 'txt_loader' in item: | |
del item['txt_loader'] | |
item['id'] = item_id | |
item['spk_name'] = item.get('spk_name', '<SINGLE_SPK>') | |
item['others'] = item.get('others', None) | |
phone_list += item['ph'].split(" ") | |
word_list += item['word'].split(" ") | |
spk_names.add(item['spk_name']) | |
items.append(item) | |
# add encoded tokens | |
ph_encoder, word_encoder = self._phone_encoder(phone_list), self._word_encoder(word_list) | |
spk_map = self.build_spk_map(spk_names) | |
args = [{ | |
'ph': item['ph'], 'word': item['word'], 'spk_name': item['spk_name'], | |
'word_encoder': word_encoder, 'ph_encoder': ph_encoder, 'spk_map': spk_map | |
} for item in items] | |
for idx, item_new_kv in multiprocess_run_tqdm(self.preprocess_second_pass, args, desc='Add encoded tokens'): | |
items[idx].update(item_new_kv) | |
# build mfa data | |
if self.preprocess_args['use_mfa']: | |
mfa_dict = set() | |
mfa_input_dir = f'{processed_dir}/mfa_inputs' | |
remove_file(mfa_input_dir) | |
# group MFA inputs for better parallelism | |
mfa_groups = [i // self.preprocess_args['nsample_per_mfa_group'] for i in range(len(items))] | |
if self.preprocess_args['mfa_group_shuffle']: | |
random.seed(hparams['seed']) | |
random.shuffle(mfa_groups) | |
args = [{ | |
'item': item, 'mfa_input_dir': mfa_input_dir, | |
'mfa_group': mfa_group, 'wav_processed_tmp': wav_processed_tmp_dir, | |
'preprocess_args': self.preprocess_args | |
} for item, mfa_group in zip(items, mfa_groups)] | |
for i, (ph_gb_word_nosil, new_wav_align_fn) in multiprocess_run_tqdm( | |
self.build_mfa_inputs, args, desc='Build MFA data'): | |
items[i]['wav_align_fn'] = new_wav_align_fn | |
for w in ph_gb_word_nosil.split(" "): | |
mfa_dict.add(f"{w} {w.replace('_', ' ')}") | |
mfa_dict = sorted(mfa_dict) | |
with open(f'{processed_dir}/mfa_dict.txt', 'w') as f: | |
f.writelines([f'{l}\n' for l in mfa_dict]) | |
with open(f"{processed_dir}/{self.meta_csv_filename}.json", 'w') as f: | |
f.write(re.sub(r'\n\s+([\d+\]])', r'\1', json.dumps(items, ensure_ascii=False, sort_keys=False, indent=1))) | |
remove_file(wav_processed_tmp_dir) | |
def preprocess_first_pass(cls, item_name, txt_raw, txt_processor, | |
wav_fn, wav_processed_dir, wav_processed_tmp, | |
preprocess_args, txt_loader=None, others=None): | |
try: | |
if txt_loader is not None: | |
txt_raw = txt_loader(txt_raw) | |
ph, txt, word, ph2word, ph_gb_word = cls.txt_to_ph(txt_processor, txt_raw, preprocess_args) | |
wav_fn, wav_align_fn = cls.process_wav( | |
item_name, wav_fn, | |
hparams['processed_data_dir'], | |
wav_processed_tmp, preprocess_args) | |
# wav for binarization | |
ext = os.path.splitext(wav_fn)[1] | |
os.makedirs(wav_processed_dir, exist_ok=True) | |
new_wav_fn = f"{wav_processed_dir}/{item_name}{ext}" | |
move_link_func = move_file if os.path.dirname(wav_fn) == wav_processed_tmp else link_file | |
move_link_func(wav_fn, new_wav_fn) | |
return { | |
'txt': txt, 'txt_raw': txt_raw, 'ph': ph, | |
'word': word, 'ph2word': ph2word, 'ph_gb_word': ph_gb_word, | |
'wav_fn': new_wav_fn, 'wav_align_fn': wav_align_fn, | |
'others': others | |
} | |
except: | |
traceback.print_exc() | |
print(f"| Error is caught. item_name: {item_name}.") | |
return None | |
def txt_to_ph(txt_processor, txt_raw, preprocess_args): | |
txt_struct, txt = txt_processor.process(txt_raw, preprocess_args) | |
ph = [p for w in txt_struct for p in w[1]] | |
ph_gb_word = ["_".join(w[1]) for w in txt_struct] | |
words = [w[0] for w in txt_struct] | |
# word_id=0 is reserved for padding | |
ph2word = [w_id + 1 for w_id, w in enumerate(txt_struct) for _ in range(len(w[1]))] | |
return " ".join(ph), txt, " ".join(words), ph2word, " ".join(ph_gb_word) | |
def process_wav(item_name, wav_fn, processed_dir, wav_processed_tmp, preprocess_args): | |
processors = [get_wav_processor_cls(v) for v in preprocess_args['wav_processors']] | |
processors = [k() for k in processors if k is not None] | |
if len(processors) >= 1: | |
sr_file = librosa.core.get_samplerate(wav_fn) | |
output_fn_for_align = None | |
ext = os.path.splitext(wav_fn)[1] | |
input_fn = f"{wav_processed_tmp}/{item_name}{ext}" | |
link_file(wav_fn, input_fn) | |
for p in processors: | |
outputs = p.process(input_fn, sr_file, wav_processed_tmp, processed_dir, item_name, preprocess_args) | |
if len(outputs) == 3: | |
input_fn, sr, output_fn_for_align = outputs | |
else: | |
input_fn, sr = outputs | |
return input_fn, output_fn_for_align | |
else: | |
return wav_fn, wav_fn | |
def _phone_encoder(self, ph_set): | |
ph_set_fn = f"{self.processed_dir}/phone_set.json" | |
if self.preprocess_args['reset_phone_dict'] or not os.path.exists(ph_set_fn): | |
ph_set = sorted(set(ph_set)) | |
json.dump(ph_set, open(ph_set_fn, 'w'), ensure_ascii=False) | |
print("| Build phone set: ", ph_set) | |
else: | |
ph_set = json.load(open(ph_set_fn, 'r')) | |
print("| Load phone set: ", ph_set) | |
return build_token_encoder(ph_set_fn) | |
def _word_encoder(self, word_set): | |
word_set_fn = f"{self.processed_dir}/word_set.json" | |
if self.preprocess_args['reset_word_dict']: | |
word_set = Counter(word_set) | |
total_words = sum(word_set.values()) | |
word_set = word_set.most_common(hparams['word_dict_size']) | |
num_unk_words = total_words - sum([x[1] for x in word_set]) | |
word_set = ['<BOS>', '<EOS>'] + [x[0] for x in word_set] | |
word_set = sorted(set(word_set)) | |
json.dump(word_set, open(word_set_fn, 'w'), ensure_ascii=False) | |
print(f"| Build word set. Size: {len(word_set)}, #total words: {total_words}," | |
f" #unk_words: {num_unk_words}, word_set[:10]:, {word_set[:10]}.") | |
else: | |
word_set = json.load(open(word_set_fn, 'r')) | |
print("| Load word set. Size: ", len(word_set), word_set[:10]) | |
return build_token_encoder(word_set_fn) | |
def preprocess_second_pass(cls, word, ph, spk_name, word_encoder, ph_encoder, spk_map): | |
word_token = word_encoder.encode(word) | |
ph_token = ph_encoder.encode(ph) | |
spk_id = spk_map[spk_name] | |
return {'word_token': word_token, 'ph_token': ph_token, 'spk_id': spk_id} | |
def build_spk_map(self, spk_names): | |
spk_map = {x: i for i, x in enumerate(sorted(list(spk_names)))} | |
assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map) | |
print(f"| Number of spks: {len(spk_map)}, spk_map: {spk_map}") | |
json.dump(spk_map, open(self.spk_map_fn, 'w'), ensure_ascii=False) | |
return spk_map | |
def build_mfa_inputs(cls, item, mfa_input_dir, mfa_group, wav_processed_tmp, preprocess_args): | |
item_name = item['item_name'] | |
wav_align_fn = item['wav_align_fn'] | |
ph_gb_word = item['ph_gb_word'] | |
ext = os.path.splitext(wav_align_fn)[1] | |
mfa_input_group_dir = f'{mfa_input_dir}/{mfa_group}' | |
os.makedirs(mfa_input_group_dir, exist_ok=True) | |
new_wav_align_fn = f"{mfa_input_group_dir}/{item_name}{ext}" | |
move_link_func = move_file if os.path.dirname(wav_align_fn) == wav_processed_tmp else link_file | |
move_link_func(wav_align_fn, new_wav_align_fn) | |
ph_gb_word_nosil = " ".join(["_".join([p for p in w.split("_") if not is_sil_phoneme(p)]) | |
for w in ph_gb_word.split(" ") if not is_sil_phoneme(w)]) | |
with open(f'{mfa_input_group_dir}/{item_name}.lab', 'w') as f_txt: | |
f_txt.write(ph_gb_word_nosil) | |
return ph_gb_word_nosil, new_wav_align_fn | |
def load_spk_map(self, base_dir): | |
spk_map_fn = f"{base_dir}/spk_map.json" | |
spk_map = json.load(open(spk_map_fn, 'r')) | |
return spk_map | |
def load_dict(self, base_dir): | |
ph_encoder = build_token_encoder(f'{base_dir}/phone_set.json') | |
word_encoder = build_token_encoder(f'{base_dir}/word_set.json') | |
return ph_encoder, word_encoder | |
def meta_csv_filename(self): | |
return 'metadata' | |
def wav_processed_dirname(self): | |
return 'wav_processed' |