GenerSpeech / utils /trainer.py
Rongjiehuang's picture
update
222619b
raw
history blame
19.7 kB
import random
from torch.cuda.amp import GradScaler, autocast
from utils import move_to_cuda
import subprocess
import numpy as np
import torch.optim
import torch.utils.data
import copy
import logging
import os
import re
import sys
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import tqdm
from utils.ckpt_utils import get_last_checkpoint, get_all_ckpts
from utils.ddp_utils import DDP
from utils.hparams import hparams
class Trainer:
def __init__(
self,
work_dir,
default_save_path=None,
accumulate_grad_batches=1,
max_updates=160000,
print_nan_grads=False,
val_check_interval=2000,
num_sanity_val_steps=5,
amp=False,
# tb logger
log_save_interval=100,
tb_log_interval=10,
# checkpoint
monitor_key='val_loss',
monitor_mode='min',
num_ckpt_keep=5,
save_best=True,
resume_from_checkpoint=0,
seed=1234,
debug=False,
):
os.makedirs(work_dir, exist_ok=True)
self.work_dir = work_dir
self.accumulate_grad_batches = accumulate_grad_batches
self.max_updates = max_updates
self.num_sanity_val_steps = num_sanity_val_steps
self.print_nan_grads = print_nan_grads
self.default_save_path = default_save_path
self.resume_from_checkpoint = resume_from_checkpoint if resume_from_checkpoint > 0 else None
self.seed = seed
self.debug = debug
# model and optm
self.task = None
self.optimizers = []
# trainer state
self.testing = False
self.global_step = 0
self.current_epoch = 0
self.total_batches = 0
# configure checkpoint
self.monitor_key = monitor_key
self.num_ckpt_keep = num_ckpt_keep
self.save_best = save_best
self.monitor_op = np.less if monitor_mode == 'min' else np.greater
self.best_val_results = np.Inf if monitor_mode == 'min' else -np.Inf
self.mode = 'min'
# allow int, string and gpu list
self.all_gpu_ids = [
int(x) for x in os.environ.get("CUDA_VISIBLE_DEVICES", "").split(",") if x != '']
self.num_gpus = len(self.all_gpu_ids)
self.on_gpu = self.num_gpus > 0
self.root_gpu = 0
logging.info(f'GPU available: {torch.cuda.is_available()}, GPU used: {self.all_gpu_ids}')
self.use_ddp = self.num_gpus > 1
self.proc_rank = 0
# Tensorboard logging
self.log_save_interval = log_save_interval
self.val_check_interval = val_check_interval
self.tb_log_interval = tb_log_interval
self.amp = amp
self.amp_scalar = GradScaler()
def test(self, task_cls):
self.testing = True
self.fit(task_cls)
def fit(self, task_cls):
if len(self.all_gpu_ids) > 1:
mp.spawn(self.ddp_run, nprocs=self.num_gpus, args=(task_cls, copy.deepcopy(hparams)))
else:
self.task = task_cls()
self.task.trainer = self
self.run_single_process(self.task)
return 1
def ddp_run(self, gpu_idx, task_cls, hparams_):
hparams.update(hparams_)
task = task_cls()
self.ddp_init(gpu_idx, task)
self.run_single_process(task)
def run_single_process(self, task):
"""Sanity check a few things before starting actual training.
:param task:
"""
# build model, optm and load checkpoint
model = task.build_model()
if model is not None:
task.model = model
checkpoint, _ = get_last_checkpoint(self.work_dir, self.resume_from_checkpoint)
if checkpoint is not None:
self.restore_weights(checkpoint)
elif self.on_gpu:
task.cuda(self.root_gpu)
if not self.testing:
self.optimizers = task.configure_optimizers()
self.fisrt_epoch = True
if checkpoint is not None:
self.restore_opt_state(checkpoint)
del checkpoint
# clear cache after restore
if self.on_gpu:
torch.cuda.empty_cache()
if self.use_ddp:
self.task = self.configure_ddp(self.task)
dist.barrier()
task_ref = self.get_task_ref()
task_ref.trainer = self
task_ref.testing = self.testing
# link up experiment object
if self.proc_rank == 0:
task_ref.build_tensorboard(save_dir=self.work_dir, name='lightning_logs', version='lastest')
else:
os.makedirs('tmp', exist_ok=True)
task_ref.build_tensorboard(save_dir='tmp', name='tb_tmp', version='lastest')
self.logger = task_ref.logger
try:
if self.testing:
self.run_evaluation(test=True)
else:
self.train()
except KeyboardInterrupt as e:
task_ref.on_keyboard_interrupt()
####################
# valid and test
####################
def run_evaluation(self, test=False):
eval_results = self.evaluate(self.task, test, tqdm_desc='Valid' if not test else 'test')
if eval_results is not None and 'tb_log' in eval_results:
tb_log_output = eval_results['tb_log']
self.log_metrics_to_tb(tb_log_output)
if self.proc_rank == 0 and not test:
self.save_checkpoint(epoch=self.current_epoch, logs=eval_results)
def evaluate(self, task, test=False, tqdm_desc='Valid', max_batches=None):
# enable eval mode
task.zero_grad()
task.eval()
torch.set_grad_enabled(False)
task_ref = self.get_task_ref()
if test:
ret = task_ref.test_start()
if ret == 'EXIT':
return
outputs = []
dataloader = task_ref.test_dataloader() if test else task_ref.val_dataloader()
pbar = tqdm.tqdm(dataloader, desc=tqdm_desc, total=max_batches, dynamic_ncols=True, unit='step',
disable=self.root_gpu > 0)
for batch_idx, batch in enumerate(pbar):
if batch is None: # pragma: no cover
continue
# stop short when on fast_dev_run (sets max_batch=1)
if max_batches is not None and batch_idx >= max_batches:
break
# make dataloader_idx arg in validation_step optional
if self.on_gpu:
batch = move_to_cuda(batch, self.root_gpu)
args = [batch, batch_idx]
if self.use_ddp:
output = task(*args)
else:
if test:
output = task_ref.test_step(*args)
else:
output = task_ref.validation_step(*args)
# track outputs for collation
outputs.append(output)
# give model a chance to do something with the outputs (and method defined)
if test:
eval_results = task_ref.test_end(outputs)
else:
eval_results = task_ref.validation_end(outputs)
# enable train mode again
task.train()
torch.set_grad_enabled(True)
return eval_results
####################
# train
####################
def train(self):
task_ref = self.get_task_ref()
task_ref.on_train_start()
if self.num_sanity_val_steps > 0:
# run tiny validation (if validation defined) to make sure program won't crash during val
self.evaluate(self.task, False, 'Sanity Val', max_batches=self.num_sanity_val_steps)
# clear cache before training
if self.on_gpu:
torch.cuda.empty_cache()
dataloader = task_ref.train_dataloader()
epoch = self.current_epoch
# run all epochs
while True:
# set seed for distributed sampler (enables shuffling for each epoch)
if self.use_ddp and hasattr(dataloader.sampler, 'set_epoch'):
dataloader.sampler.set_epoch(epoch)
# update training progress in trainer and model
task_ref.current_epoch = epoch
self.current_epoch = epoch
# total batches includes multiple val checks
self.batch_loss_value = 0 # accumulated grads
# before epoch hook
task_ref.on_epoch_start()
# run epoch
train_pbar = tqdm.tqdm(dataloader, initial=self.global_step, total=float('inf'),
dynamic_ncols=True, unit='step', disable=self.root_gpu > 0)
for batch_idx, batch in enumerate(train_pbar):
pbar_metrics, tb_metrics = self.run_training_batch(batch_idx, batch)
train_pbar.set_postfix(**pbar_metrics)
should_check_val = (self.global_step % self.val_check_interval == 0
and not self.fisrt_epoch)
if should_check_val:
self.run_evaluation()
self.fisrt_epoch = False
# when metrics should be logged
if (self.global_step + 1) % self.tb_log_interval == 0:
# logs user requested information to logger
self.log_metrics_to_tb(tb_metrics)
self.global_step += 1
task_ref.global_step = self.global_step
if self.global_step > self.max_updates:
print("| Training end..")
break
# epoch end hook
task_ref.on_epoch_end()
epoch += 1
if self.global_step > self.max_updates:
break
task_ref.on_train_end()
def run_training_batch(self, batch_idx, batch):
if batch is None:
return {}
all_progress_bar_metrics = []
all_log_metrics = []
task_ref = self.get_task_ref()
for opt_idx, optimizer in enumerate(self.optimizers):
if optimizer is None:
continue
# make sure only the gradients of the current optimizer's paramaters are calculated
# in the training step to prevent dangling gradients in multiple-optimizer setup.
if len(self.optimizers) > 1:
for param in task_ref.parameters():
param.requires_grad = False
for group in optimizer.param_groups:
for param in group['params']:
param.requires_grad = True
# forward pass
with autocast(enabled=self.amp):
if self.on_gpu:
batch = move_to_cuda(copy.copy(batch), self.root_gpu)
args = [batch, batch_idx, opt_idx]
if self.use_ddp:
output = self.task(*args)
else:
output = task_ref.training_step(*args)
loss = output['loss']
if loss is None:
continue
progress_bar_metrics = output['progress_bar']
log_metrics = output['tb_log']
# accumulate loss
loss = loss / self.accumulate_grad_batches
# backward pass
if loss.requires_grad:
if self.amp:
self.amp_scalar.scale(loss).backward()
else:
loss.backward()
# track progress bar metrics
all_log_metrics.append(log_metrics)
all_progress_bar_metrics.append(progress_bar_metrics)
if loss is None:
continue
# nan grads
if self.print_nan_grads:
has_nan_grad = False
for name, param in task_ref.named_parameters():
if (param.grad is not None) and torch.isnan(param.grad.float()).any():
print("| NaN params: ", name, param, param.grad)
has_nan_grad = True
if has_nan_grad:
exit(0)
# gradient update with accumulated gradients
if (self.global_step + 1) % self.accumulate_grad_batches == 0:
task_ref.on_before_optimization(opt_idx)
if self.amp:
self.amp_scalar.step(optimizer)
self.amp_scalar.update()
else:
optimizer.step()
optimizer.zero_grad()
task_ref.on_after_optimization(self.current_epoch, batch_idx, optimizer, opt_idx)
# collapse all metrics into one dict
all_progress_bar_metrics = {k: v for d in all_progress_bar_metrics for k, v in d.items()}
all_log_metrics = {k: v for d in all_log_metrics for k, v in d.items()}
return all_progress_bar_metrics, all_log_metrics
####################
# load and save checkpoint
####################
def restore_weights(self, checkpoint):
# load model state
task_ref = self.get_task_ref()
if len([k for k in checkpoint['state_dict'].keys() if '.' in k]) > 0:
task_ref.load_state_dict(checkpoint['state_dict'])
else:
for k, v in checkpoint['state_dict'].items():
getattr(task_ref, k).load_state_dict(v)
if self.on_gpu:
task_ref.cuda(self.root_gpu)
# load training state (affects trainer only)
self.best_val_results = checkpoint['checkpoint_callback_best']
self.global_step = checkpoint['global_step']
self.current_epoch = checkpoint['epoch']
task_ref.global_step = self.global_step
# wait for all model to restore weights
if self.use_ddp:
# wait for all processes to catch up
dist.barrier()
def restore_opt_state(self, checkpoint):
if self.testing:
return
# restore the optimizers
optimizer_states = checkpoint['optimizer_states']
for optimizer, opt_state in zip(self.optimizers, optimizer_states):
if optimizer is None:
return
try:
optimizer.load_state_dict(opt_state)
# move optimizer to GPU 1 weight at a time
if self.on_gpu:
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.cuda(self.root_gpu)
except ValueError:
print("| WARMING: optimizer parameters not match !!!")
try:
if dist.is_initialized() and dist.get_rank() > 0:
return
except Exception as e:
print(e)
return
did_restore = True
return did_restore
def save_checkpoint(self, epoch, logs=None):
monitor_op = np.less
ckpt_path = f'{self.work_dir}/model_ckpt_steps_{self.global_step}.ckpt'
logging.info(f'Epoch {epoch:05d}@{self.global_step}: saving model to {ckpt_path}')
self._atomic_save(ckpt_path)
for old_ckpt in get_all_ckpts(self.work_dir)[self.num_ckpt_keep:]:
subprocess.check_call(f'rm -rf "{old_ckpt}"', shell=True)
logging.info(f'Delete ckpt: {os.path.basename(old_ckpt)}')
current = None
if logs is not None and self.monitor_key in logs:
current = logs[self.monitor_key]
if current is not None and self.save_best:
if monitor_op(current, self.best_val_results):
best_filepath = f'{self.work_dir}/model_ckpt_best.pt'
self.best_val_results = current
logging.info(
f'Epoch {epoch:05d}@{self.global_step}: {self.monitor_key} reached {current:0.5f}. '
f'Saving model to {best_filepath}')
self._atomic_save(best_filepath)
def _atomic_save(self, filepath):
checkpoint = self.dump_checkpoint()
tmp_path = str(filepath) + ".part"
torch.save(checkpoint, tmp_path, _use_new_zipfile_serialization=False)
os.replace(tmp_path, filepath)
def dump_checkpoint(self):
checkpoint = {'epoch': self.current_epoch, 'global_step': self.global_step,
'checkpoint_callback_best': self.best_val_results}
# save optimizers
optimizer_states = []
for i, optimizer in enumerate(self.optimizers):
if optimizer is not None:
optimizer_states.append(optimizer.state_dict())
checkpoint['optimizer_states'] = optimizer_states
task_ref = self.get_task_ref()
checkpoint['state_dict'] = {
k: v.state_dict() for k, v in task_ref.named_children() if len(list(v.parameters())) > 0}
return checkpoint
####################
# DDP
####################
def ddp_init(self, gpu_idx, task):
# determine which process we are and world size
self.proc_rank = gpu_idx
task.trainer = self
self.init_ddp_connection(self.proc_rank, self.num_gpus)
# copy model to each gpu
torch.cuda.set_device(gpu_idx)
# override root GPU
self.root_gpu = gpu_idx
self.task = task
def configure_ddp(self, task):
task = DDP(task, device_ids=[self.root_gpu], find_unused_parameters=True)
if dist.get_rank() != 0 and not self.debug:
sys.stdout = open(os.devnull, "w")
sys.stderr = open(os.devnull, "w")
random.seed(self.seed)
np.random.seed(self.seed)
return task
def init_ddp_connection(self, proc_rank, world_size):
root_node = '127.0.0.1'
root_node = self.resolve_root_node_address(root_node)
os.environ['MASTER_ADDR'] = root_node
dist.init_process_group('nccl', rank=proc_rank, world_size=world_size)
def resolve_root_node_address(self, root_node):
if '[' in root_node:
name = root_node.split('[')[0]
number = root_node.split(',')[0]
if '-' in number:
number = number.split('-')[0]
number = re.sub('[^0-9]', '', number)
root_node = name + number
return root_node
####################
# utils
####################
def get_task_ref(self):
from tasks.base_task import BaseTask
task: BaseTask = self.task.module if isinstance(self.task, DDP) else self.task
return task
def log_metrics_to_tb(self, metrics, step=None):
"""Logs the metric dict passed in.
:param metrics:
"""
# added metrics by Lightning for convenience
metrics['epoch'] = self.current_epoch
# turn all tensors to scalars
scalar_metrics = self.metrics_to_scalars(metrics)
step = step if step is not None else self.global_step
# log actual metrics
if self.proc_rank == 0:
self.log_metrics(self.logger, scalar_metrics, step=step)
@staticmethod
def log_metrics(logger, metrics, step=None):
for k, v in metrics.items():
if isinstance(v, torch.Tensor):
v = v.item()
logger.add_scalar(k, v, step)
def metrics_to_scalars(self, metrics):
new_metrics = {}
for k, v in metrics.items():
if isinstance(v, torch.Tensor):
v = v.item()
if type(v) is dict:
v = self.metrics_to_scalars(v)
new_metrics[k] = v
return new_metrics