from data_gen.tts.data_gen_utils import is_sil_phoneme from resemblyzer import VoiceEncoder from data_gen.tts.data_gen_utils import build_phone_encoder, build_word_encoder from tasks.tts.dataset_utils import FastSpeechWordDataset from tasks.tts.tts_utils import load_data_preprocessor from vocoders.hifigan import HifiGanGenerator from data_gen.tts.emotion import inference as EmotionEncoder from data_gen.tts.emotion.inference import embed_utterance as Embed_utterance from data_gen.tts.emotion.inference import preprocess_wav import importlib import os import librosa import soundfile as sf from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from string import punctuation import torch from utils import audio from utils.ckpt_utils import load_ckpt from utils.hparams import set_hparams class BaseTTSInfer: def __init__(self, hparams, device=None): if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' self.hparams = hparams self.device = device self.data_dir = hparams['binary_data_dir'] self.preprocessor, self.preprocess_args = load_data_preprocessor() self.ph_encoder, self.word_encoder = self.preprocessor.load_dict(self.data_dir) self.spk_map = self.preprocessor.load_spk_map(self.data_dir) self.ds_cls = FastSpeechWordDataset self.model = self.build_model() self.model.eval() self.model.to(self.device) self.vocoder = self.build_vocoder() self.vocoder.eval() self.vocoder.to(self.device) self.asr_processor, self.asr_model = self.build_asr() def build_model(self): raise NotImplementedError def forward_model(self, inp): raise NotImplementedError def build_asr(self): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h") # facebook/wav2vec2-base-960h wav2vec2-large-960h-lv60-self model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to(self.device) return processor, model def build_vocoder(self): base_dir = self.hparams['vocoder_ckpt'] config_path = f'{base_dir}/config.yaml' config = set_hparams(config_path, global_hparams=False) vocoder = HifiGanGenerator(config) load_ckpt(vocoder, base_dir, 'model_gen') return vocoder def run_vocoder(self, c): c = c.transpose(2, 1) y = self.vocoder(c)[:, 0] return y def preprocess_input(self, inp): """ :param inp: {'text': str, 'item_name': (str, optional), 'spk_name': (str, optional)} :return: """ # processed text preprocessor, preprocess_args = self.preprocessor, self.preprocess_args text_raw = inp['text'] item_name = inp.get('item_name', '') ph, txt, word, ph2word, ph_gb_word = preprocessor.txt_to_ph(preprocessor.txt_processor, text_raw, preprocess_args) ph_token = self.ph_encoder.encode(ph) # processed ref audio ref_audio = inp['ref_audio'] processed_ref_audio = 'example/temp.wav' voice_encoder = VoiceEncoder().cuda() encoder = [self.ph_encoder, self.word_encoder] EmotionEncoder.load_model(self.hparams['emotion_encoder_path']) binarizer_cls = self.hparams.get("binarizer_cls", 'data_gen.tts.base_binarizerr.BaseBinarizer') pkg = ".".join(binarizer_cls.split(".")[:-1]) cls_name = binarizer_cls.split(".")[-1] binarizer_cls = getattr(importlib.import_module(pkg), cls_name) ref_audio_raw, ref_text_raw = self.asr(ref_audio) # prepare text ph_ref, txt_ref, word_ref, ph2word_ref, ph_gb_word_ref = preprocessor.txt_to_ph(preprocessor.txt_processor, ref_text_raw, preprocess_args) ph_gb_word_nosil = ["_".join([p for p in w.split("_") if not is_sil_phoneme(p)]) for w in ph_gb_word_ref.split(" ") if not is_sil_phoneme(w)] phs_for_align = ['SIL'] + ph_gb_word_nosil + ['SIL'] phs_for_align = " ".join(phs_for_align) # prepare files for alignment os.system('rm -r example/; mkdir example/') audio.save_wav(ref_audio_raw, processed_ref_audio, self.hparams['audio_sample_rate']) with open(f'example/temp.lab', 'w') as f_txt: f_txt.write(phs_for_align) os.system(f'mfa align example/ {self.hparams["binary_data_dir"]}/mfa_dict.txt {self.hparams["binary_data_dir"]}/mfa_model.zip example/textgrid/ --clean') item2tgfn = 'example/textgrid/temp.TextGrid' # prepare textgrid alignment item = binarizer_cls.process_item(item_name, ph_ref, txt_ref, item2tgfn, processed_ref_audio, 0, 0, encoder, self.hparams['binarization_args']) item['emo_embed'] = Embed_utterance(preprocess_wav(item['wav_fn'])) item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) item.update({ 'ref_ph': item['ph'], 'ph': ph, 'ph_token': ph_token, 'text': txt }) return item def input_to_batch(self, item): item_names = [item['item_name']] text = [item['text']] ph = [item['ph']] txt_tokens = torch.LongTensor(item['ph_token'])[None, :].to(self.device) txt_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device) mels = torch.FloatTensor(item['mel'])[None, :].to(self.device) f0 = torch.FloatTensor(item['f0'])[None, :].to(self.device) # uv = torch.FloatTensor(item['uv']).to(self.device) mel2ph = torch.LongTensor(item['mel2ph'])[None, :].to(self.device) spk_embed = torch.FloatTensor(item['spk_embed'])[None, :].to(self.device) emo_embed = torch.FloatTensor(item['emo_embed'])[None, :].to(self.device) ph2word = torch.LongTensor(item['ph2word'])[None, :].to(self.device) mel2word = torch.LongTensor(item['mel2word'])[None, :].to(self.device) word_tokens = torch.LongTensor(item['word_tokens'])[None, :].to(self.device) batch = { 'item_name': item_names, 'text': text, 'ph': ph, 'mels': mels, 'f0': f0, 'txt_tokens': txt_tokens, 'txt_lengths': txt_lengths, 'spk_embed': spk_embed, 'emo_embed': emo_embed, 'mel2ph': mel2ph, 'ph2word': ph2word, 'mel2word': mel2word, 'word_tokens': word_tokens, } return batch def postprocess_output(self, output): return output def infer_once(self, inp): inp = self.preprocess_input(inp) output = self.forward_model(inp) output = self.postprocess_output(output) return output @classmethod def example_run(cls): from utils.hparams import set_hparams from utils.hparams import hparams as hp from utils.audio import save_wav set_hparams() inp = { 'text': hp['text'], 'ref_audio': hp['ref_audio'] } infer_ins = cls(hp) out = infer_ins.infer_once(inp) os.makedirs('infer_out', exist_ok=True) save_wav(out, f'infer_out/{hp["text"]}.wav', hp['audio_sample_rate']) print(f'Save at infer_out/{hp["text"]}.wav.') def asr(self, file): sample_rate = self.hparams['audio_sample_rate'] audio_input, source_sample_rate = sf.read(file) # Resample the wav if needed if sample_rate is not None and source_sample_rate != sample_rate: audio_input = librosa.resample(audio_input, source_sample_rate, sample_rate) # pad input values and return pt tensor input_values = self.asr_processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # retrieve logits & take argmax logits = self.asr_model(input_values.cuda()).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = self.asr_processor.decode(predicted_ids[0]) transcription = transcription.rstrip(punctuation) return audio_input, transcription