import json import os import random import re import traceback from collections import Counter from functools import partial import librosa from tqdm import tqdm from data_gen.tts.txt_processors.base_text_processor import get_txt_processor_cls from data_gen.tts.wav_processors.base_processor import get_wav_processor_cls from utils.hparams import hparams from utils.multiprocess_utils import multiprocess_run_tqdm from utils.os_utils import link_file, move_file, remove_file from data_gen.tts.data_gen_utils import is_sil_phoneme, build_token_encoder class BasePreprocessor: def __init__(self): self.preprocess_args = hparams['preprocess_args'] txt_processor = self.preprocess_args['txt_processor'] self.txt_processor = get_txt_processor_cls(txt_processor) self.raw_data_dir = hparams['raw_data_dir'] self.processed_dir = hparams['processed_data_dir'] self.spk_map_fn = f"{self.processed_dir}/spk_map.json" def meta_data(self): """ :return: {'item_name': Str, 'wav_fn': Str, 'txt': Str, 'spk_name': Str, 'txt_loader': None or Func} """ raise NotImplementedError def process(self): processed_dir = self.processed_dir wav_processed_tmp_dir = f'{processed_dir}/processed_tmp' remove_file(wav_processed_tmp_dir) os.makedirs(wav_processed_tmp_dir, exist_ok=True) wav_processed_dir = f'{processed_dir}/{self.wav_processed_dirname}' remove_file(wav_processed_dir) os.makedirs(wav_processed_dir, exist_ok=True) meta_data = list(tqdm(self.meta_data(), desc='Load meta data')) item_names = [d['item_name'] for d in meta_data] assert len(item_names) == len(set(item_names)), 'Key `item_name` should be Unique.' # preprocess data phone_list = [] word_list = [] spk_names = set() process_item = partial(self.preprocess_first_pass, txt_processor=self.txt_processor, wav_processed_dir=wav_processed_dir, wav_processed_tmp=wav_processed_tmp_dir, preprocess_args=self.preprocess_args) items = [] args = [{ 'item_name': item_raw['item_name'], 'txt_raw': item_raw['txt'], 'wav_fn': item_raw['wav_fn'], 'txt_loader': item_raw.get('txt_loader'), 'others': item_raw.get('others', None) } for item_raw in meta_data] for item_, (item_id, item) in zip(meta_data, multiprocess_run_tqdm(process_item, args, desc='Preprocess')): if item is not None: item_.update(item) item = item_ if 'txt_loader' in item: del item['txt_loader'] item['id'] = item_id item['spk_name'] = item.get('spk_name', '') item['others'] = item.get('others', None) phone_list += item['ph'].split(" ") word_list += item['word'].split(" ") spk_names.add(item['spk_name']) items.append(item) # add encoded tokens ph_encoder, word_encoder = self._phone_encoder(phone_list), self._word_encoder(word_list) spk_map = self.build_spk_map(spk_names) args = [{ 'ph': item['ph'], 'word': item['word'], 'spk_name': item['spk_name'], 'word_encoder': word_encoder, 'ph_encoder': ph_encoder, 'spk_map': spk_map } for item in items] for idx, item_new_kv in multiprocess_run_tqdm(self.preprocess_second_pass, args, desc='Add encoded tokens'): items[idx].update(item_new_kv) # build mfa data if self.preprocess_args['use_mfa']: mfa_dict = set() mfa_input_dir = f'{processed_dir}/mfa_inputs' remove_file(mfa_input_dir) # group MFA inputs for better parallelism mfa_groups = [i // self.preprocess_args['nsample_per_mfa_group'] for i in range(len(items))] if self.preprocess_args['mfa_group_shuffle']: random.seed(hparams['seed']) random.shuffle(mfa_groups) args = [{ 'item': item, 'mfa_input_dir': mfa_input_dir, 'mfa_group': mfa_group, 'wav_processed_tmp': wav_processed_tmp_dir, 'preprocess_args': self.preprocess_args } for item, mfa_group in zip(items, mfa_groups)] for i, (ph_gb_word_nosil, new_wav_align_fn) in multiprocess_run_tqdm( self.build_mfa_inputs, args, desc='Build MFA data'): items[i]['wav_align_fn'] = new_wav_align_fn for w in ph_gb_word_nosil.split(" "): mfa_dict.add(f"{w} {w.replace('_', ' ')}") mfa_dict = sorted(mfa_dict) with open(f'{processed_dir}/mfa_dict.txt', 'w') as f: f.writelines([f'{l}\n' for l in mfa_dict]) with open(f"{processed_dir}/{self.meta_csv_filename}.json", 'w') as f: f.write(re.sub(r'\n\s+([\d+\]])', r'\1', json.dumps(items, ensure_ascii=False, sort_keys=False, indent=1))) remove_file(wav_processed_tmp_dir) @classmethod def preprocess_first_pass(cls, item_name, txt_raw, txt_processor, wav_fn, wav_processed_dir, wav_processed_tmp, preprocess_args, txt_loader=None, others=None): try: if txt_loader is not None: txt_raw = txt_loader(txt_raw) ph, txt, word, ph2word, ph_gb_word = cls.txt_to_ph(txt_processor, txt_raw, preprocess_args) wav_fn, wav_align_fn = cls.process_wav( item_name, wav_fn, hparams['processed_data_dir'], wav_processed_tmp, preprocess_args) # wav for binarization ext = os.path.splitext(wav_fn)[1] os.makedirs(wav_processed_dir, exist_ok=True) new_wav_fn = f"{wav_processed_dir}/{item_name}{ext}" move_link_func = move_file if os.path.dirname(wav_fn) == wav_processed_tmp else link_file move_link_func(wav_fn, new_wav_fn) return { 'txt': txt, 'txt_raw': txt_raw, 'ph': ph, 'word': word, 'ph2word': ph2word, 'ph_gb_word': ph_gb_word, 'wav_fn': new_wav_fn, 'wav_align_fn': wav_align_fn, 'others': others } except: traceback.print_exc() print(f"| Error is caught. item_name: {item_name}.") return None @staticmethod def txt_to_ph(txt_processor, txt_raw, preprocess_args): txt_struct, txt = txt_processor.process(txt_raw, preprocess_args) ph = [p for w in txt_struct for p in w[1]] ph_gb_word = ["_".join(w[1]) for w in txt_struct] words = [w[0] for w in txt_struct] # word_id=0 is reserved for padding ph2word = [w_id + 1 for w_id, w in enumerate(txt_struct) for _ in range(len(w[1]))] return " ".join(ph), txt, " ".join(words), ph2word, " ".join(ph_gb_word) @staticmethod def process_wav(item_name, wav_fn, processed_dir, wav_processed_tmp, preprocess_args): processors = [get_wav_processor_cls(v) for v in preprocess_args['wav_processors']] processors = [k() for k in processors if k is not None] if len(processors) >= 1: sr_file = librosa.core.get_samplerate(wav_fn) output_fn_for_align = None ext = os.path.splitext(wav_fn)[1] input_fn = f"{wav_processed_tmp}/{item_name}{ext}" link_file(wav_fn, input_fn) for p in processors: outputs = p.process(input_fn, sr_file, wav_processed_tmp, processed_dir, item_name, preprocess_args) if len(outputs) == 3: input_fn, sr, output_fn_for_align = outputs else: input_fn, sr = outputs return input_fn, output_fn_for_align else: return wav_fn, wav_fn def _phone_encoder(self, ph_set): ph_set_fn = f"{self.processed_dir}/phone_set.json" if self.preprocess_args['reset_phone_dict'] or not os.path.exists(ph_set_fn): ph_set = sorted(set(ph_set)) json.dump(ph_set, open(ph_set_fn, 'w'), ensure_ascii=False) print("| Build phone set: ", ph_set) else: ph_set = json.load(open(ph_set_fn, 'r')) print("| Load phone set: ", ph_set) return build_token_encoder(ph_set_fn) def _word_encoder(self, word_set): word_set_fn = f"{self.processed_dir}/word_set.json" if self.preprocess_args['reset_word_dict']: word_set = Counter(word_set) total_words = sum(word_set.values()) word_set = word_set.most_common(hparams['word_dict_size']) num_unk_words = total_words - sum([x[1] for x in word_set]) word_set = ['', ''] + [x[0] for x in word_set] word_set = sorted(set(word_set)) json.dump(word_set, open(word_set_fn, 'w'), ensure_ascii=False) print(f"| Build word set. Size: {len(word_set)}, #total words: {total_words}," f" #unk_words: {num_unk_words}, word_set[:10]:, {word_set[:10]}.") else: word_set = json.load(open(word_set_fn, 'r')) print("| Load word set. Size: ", len(word_set), word_set[:10]) return build_token_encoder(word_set_fn) @classmethod def preprocess_second_pass(cls, word, ph, spk_name, word_encoder, ph_encoder, spk_map): word_token = word_encoder.encode(word) ph_token = ph_encoder.encode(ph) spk_id = spk_map[spk_name] return {'word_token': word_token, 'ph_token': ph_token, 'spk_id': spk_id} def build_spk_map(self, spk_names): spk_map = {x: i for i, x in enumerate(sorted(list(spk_names)))} assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map) print(f"| Number of spks: {len(spk_map)}, spk_map: {spk_map}") json.dump(spk_map, open(self.spk_map_fn, 'w'), ensure_ascii=False) return spk_map @classmethod def build_mfa_inputs(cls, item, mfa_input_dir, mfa_group, wav_processed_tmp, preprocess_args): item_name = item['item_name'] wav_align_fn = item['wav_align_fn'] ph_gb_word = item['ph_gb_word'] ext = os.path.splitext(wav_align_fn)[1] mfa_input_group_dir = f'{mfa_input_dir}/{mfa_group}' os.makedirs(mfa_input_group_dir, exist_ok=True) new_wav_align_fn = f"{mfa_input_group_dir}/{item_name}{ext}" move_link_func = move_file if os.path.dirname(wav_align_fn) == wav_processed_tmp else link_file move_link_func(wav_align_fn, new_wav_align_fn) ph_gb_word_nosil = " ".join(["_".join([p for p in w.split("_") if not is_sil_phoneme(p)]) for w in ph_gb_word.split(" ") if not is_sil_phoneme(w)]) with open(f'{mfa_input_group_dir}/{item_name}.lab', 'w') as f_txt: f_txt.write(ph_gb_word_nosil) return ph_gb_word_nosil, new_wav_align_fn def load_spk_map(self, base_dir): spk_map_fn = f"{base_dir}/spk_map.json" spk_map = json.load(open(spk_map_fn, 'r')) return spk_map def load_dict(self, base_dir): ph_encoder = build_token_encoder(f'{base_dir}/phone_set.json') word_encoder = build_token_encoder(f'{base_dir}/word_set.json') return ph_encoder, word_encoder @property def meta_csv_filename(self): return 'metadata' @property def wav_processed_dirname(self): return 'wav_processed'