base_config: ./base.yaml task_cls: tasks.vocoder.pwg.PwgTask aux_context_window: 2 # Context window size for auxiliary feature. use_pitch_embed: false ########################################################### # GENERATOR NETWORK ARCHITECTURE SETTING # ########################################################### generator_params: in_channels: 1 # Number of input channels. out_channels: 1 # Number of output channels. kernel_size: 3 # Kernel size of dilated convolution. layers: 30 # Number of residual block layers. stacks: 3 # Number of stacks i.e., dilation cycles. residual_channels: 64 # Number of channels in residual conv. gate_channels: 128 # Number of channels in gated conv. skip_channels: 64 # Number of channels in skip conv. aux_channels: 80 # Number of channels for auxiliary feature conv. # Must be the same as num_mels. # If set to 2, previous 2 and future 2 frames will be considered. dropout: 0.0 # Dropout rate. 0.0 means no dropout applied. use_weight_norm: true # Whether to use weight norm. # If set to true, it will be applied to all of the conv layers. upsample_net: "ConvInUpsampleNetwork" # Upsampling network architecture. upsample_params: # Upsampling network parameters. upsample_scales: [4, 4, 4, 4] # Upsampling scales. Prodcut of these must be the same as hop size. use_pitch_embed: false use_nsf: false ########################################################### # DISCRIMINATOR NETWORK ARCHITECTURE SETTING # ########################################################### discriminator_params: in_channels: 1 # Number of input channels. out_channels: 1 # Number of output channels. kernel_size: 3 # Number of output channels. layers: 10 # Number of conv layers. conv_channels: 64 # Number of chnn layers. bias: true # Whether to use bias parameter in conv. use_weight_norm: true # Whether to use weight norm. # If set to true, it will be applied to all of the conv layers. nonlinear_activation: "LeakyReLU" # Nonlinear function after each conv. nonlinear_activation_params: # Nonlinear function parameters negative_slope: 0.2 # Alpha in LeakyReLU. rerun_gen: true ########################################################### # STFT LOSS SETTING # ########################################################### stft_loss_params: fft_sizes: [1024, 2048, 512] # List of FFT size for STFT-based loss. hop_sizes: [120, 240, 50] # List of hop size for STFT-based loss win_lengths: [600, 1200, 240] # List of window length for STFT-based loss. window: "hann_window" # Window function for STFT-based loss use_mel_loss: false ########################################################### # ADVERSARIAL LOSS SETTING # ########################################################### lambda_adv: 4.0 # Loss balancing coefficient. ########################################################### # OPTIMIZER & SCHEDULER SETTING # ########################################################### generator_optimizer_params: lr: 0.0001 # Generator's learning rate. eps: 1.0e-6 # Generator's epsilon. weight_decay: 0.0 # Generator's weight decay coefficient. generator_scheduler_params: step_size: 200000 # Generator's scheduler step size. gamma: 0.5 # Generator's scheduler gamma. # At each step size, lr will be multiplied by this parameter. generator_grad_norm: 10 # Generator's gradient norm. discriminator_optimizer_params: lr: 0.00005 # Discriminator's learning rate. eps: 1.0e-6 # Discriminator's epsilon. weight_decay: 0.0 # Discriminator's weight decay coefficient. discriminator_scheduler_params: step_size: 200000 # Discriminator's scheduler step size. gamma: 0.5 # Discriminator's scheduler gamma. # At each step size, lr will be multiplied by this parameter. discriminator_grad_norm: 1 # Discriminator's gradient norm. disc_start_steps: 40000 # Number of steps to start to train discriminator.