File size: 3,240 Bytes
1fae4f7
737f1ab
fb5e5a5
737f1ab
20379ba
 
1fae4f7
20379ba
737f1ab
1fae4f7
737f1ab
094a3ac
 
 
 
 
737f1ab
094a3ac
737f1ab
 
094a3ac
 
 
 
046ae6c
737f1ab
20379ba
 
 
 
046ae6c
737f1ab
1fae4f7
737f1ab
 
 
 
 
046ae6c
737f1ab
20379ba
 
 
 
046ae6c
737f1ab
1fae4f7
737f1ab
 
 
 
 
20379ba
 
737f1ab
 
1fae4f7
20379ba
737f1ab
 
1fae4f7
3f6deb5
046ae6c
 
20379ba
737f1ab
 
20379ba
 
737f1ab
 
 
1fae4f7
3f6deb5
046ae6c
 
20379ba
737f1ab
 
20379ba
 
737f1ab
 
 
1fae4f7
3f6deb5
20379ba
 
737f1ab
 
20379ba
 
046ae6c
737f1ab
 
1fae4f7
20379ba
737f1ab
 
 
20379ba
737f1ab
1fae4f7
 
094a3ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import gradio as gr
from gradio_client import Client, handle_file
from gradio_imageslider import ImageSlider
from PIL import Image
import tempfile
import os

# Инициализируем клиент
client = Client("not-lain/background-removal")

def process_image_via_api(image):
    # Сохраняем изображение во временный файл
    with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
        image.save(temp_file.name)
        temp_file_path = temp_file.name
    
    result = client.predict(
        image=handle_file(temp_file_path),
        api_name="/image"
    )
    
    # Удаляем временный файл после использования
    os.remove(temp_file_path)
    
    # Convert the output tuple to PIL images and return
    if result:
        processed_image_path = result[0]
        origin_image_path = result[1]
        processed_image = Image.open(processed_image_path)
        origin_image = Image.open(origin_image_path)
        return (processed_image, origin_image)
    return None, None

def process_url_via_api(url):
    result = client.predict(
        image=url,
        api_name="/text"
    )
    # Convert the output tuple to PIL images and return
    if result:
        processed_image_path = result[0]
        origin_image_path = result[1]
        processed_image = Image.open(processed_image_path)
        origin_image = Image.open(origin_image_path)
        return (processed_image, origin_image)
    return None, None

def process_file_via_api(f):
    result = client.predict(
        f=handle_file(f),
        api_name="/png"
    )
    # Return the path to the saved PNG file
    if result:
        return result
    return None

# Пример изображений
chameleon = "butterfly.jpg"
url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"

# Tab 1: Image Upload
slider1_processed = ImageSlider(label="Processed Image", type="pil")
slider1_origin = ImageSlider(label="Original Image", type="pil")
image_upload = gr.Image(label="Upload an image")
tab1 = gr.Interface(
    fn=process_image_via_api, 
    inputs=image_upload, 
    outputs=[slider1_processed, slider1_origin], 
    examples=[chameleon], 
    api_name="/image_api"
)

# Tab 2: URL Input
slider2_processed = ImageSlider(label="Processed Image", type="pil")
slider2_origin = ImageSlider(label="Original Image", type="pil")
url_input = gr.Textbox(label="Paste an image URL")
tab2 = gr.Interface(
    fn=process_url_via_api, 
    inputs=url_input, 
    outputs=[slider2_processed, slider2_origin], 
    examples=[url_example], 
    api_name="/url_api"
)

# Tab 3: File Output
output_file = gr.File(label="Output PNG File")
image_file_upload = gr.Image(label="Upload an image", type="filepath")
tab3 = gr.Interface(
    fn=process_file_via_api, 
    inputs=image_file_upload, 
    outputs=output_file, 
    examples=["butterfly.jpg"], 
    api_name="/png_api"
)

# Создаем интерфейс с вкладками
demo = gr.TabbedInterface(
    [tab1, tab2, tab3], 
    ["Image Upload", "URL Input", "File Output"], 
    title="Background Removal Tool"
)

if __name__ == "__main__":
    demo.launch(show_error=True)