|
|
|
from scipy.special import softmax |
|
from model import Model |
|
import numpy as np |
|
|
|
class Classifier: |
|
def __init__(self): |
|
self.model = Model.load_model() |
|
self.tokenizer = Model.load_tokenizer() |
|
|
|
def get_sentiment_label_and_score(self, text: str): |
|
result = {} |
|
labels = ["Negative", "Neutral", "Positive"] |
|
encoded_input = self.tokenizer(text, return_tensors='pt') |
|
output = self.model(**encoded_input) |
|
scores = output[0][0].detach().numpy() |
|
scores = softmax(scores) |
|
ranking = np.argsort(scores) |
|
ranking = ranking[::-1] |
|
result["label"] = str(labels[ranking[0]]) |
|
result["score"] = np.round(float(scores[ranking[0]]), 4) |
|
return result |