Spaces:
Runtime error
Runtime error
File size: 8,180 Bytes
78d7e62 c7838e5 78d7e62 c7838e5 0d986e2 c7838e5 78d7e62 c7838e5 78d7e62 328779b c7838e5 78d7e62 328779b 78d7e62 0d986e2 78d7e62 c7838e5 0d986e2 c7838e5 78d7e62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
"""Streamlit app for Presidio + Privy-trained PII models."""
import spacy
from spacy_recognizer import CustomSpacyRecognizer
from presidio_analyzer.nlp_engine import NlpEngineProvider
from presidio_anonymizer import AnonymizerEngine
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
import pandas as pd
from annotated_text import annotated_text
from json import JSONEncoder
import json
import warnings
import streamlit as st
import os
import csv
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings('ignore')
# from flair_recognizer import FlairRecognizer
def load_data(file_location):
unpacked_string_data = []
unpacked_url_data = []
unpacked_json_data = []
# Read the data back from the CSV file and unpack it
with open(file_location, mode='r') as csv_file:
reader = csv.reader(csv_file)
for row in reader:
unpacked_string_data.append(row[0])
unpacked_url_data.append(row[1])
unpacked_json_data.append(json.loads(row[2]))
# print("Unpacked string data:", unpacked_string_data)
# print("Unpacked url data:", unpacked_url_data)
# print("Unpacked JSON data:", unpacked_json_data)
return unpacked_string_data, unpacked_url_data, unpacked_json_data
# Helper methods
@st.cache(allow_output_mutation=True)
def analyzer_engine():
"""Return AnalyzerEngine."""
spacy_recognizer = CustomSpacyRecognizer()
configuration = {
"nlp_engine_name": "spacy",
"models": [
{"lang_code": "en", "model_name": "en_spacy_pii_distilbert"}],
}
# Create NLP engine based on configuration
provider = NlpEngineProvider(nlp_configuration=configuration)
nlp_engine = provider.create_engine()
registry = RecognizerRegistry()
# add rule-based recognizers
registry.load_predefined_recognizers(nlp_engine=nlp_engine)
registry.add_recognizer(spacy_recognizer)
# remove the nlp engine we passed, to use custom label mappings
registry.remove_recognizer("SpacyRecognizer")
analyzer = AnalyzerEngine(nlp_engine=nlp_engine,
registry=registry, supported_languages=["en"])
# uncomment for flair-based NLP recognizer
# flair_recognizer = FlairRecognizer()
# registry.load_predefined_recognizers()
# registry.add_recognizer(flair_recognizer)
# analyzer = AnalyzerEngine(registry=registry, supported_languages=["en"])
return analyzer
@st.cache(allow_output_mutation=True)
def anonymizer_engine():
"""Return AnonymizerEngine."""
return AnonymizerEngine()
def get_supported_entities():
"""Return supported entities from the Analyzer Engine."""
return analyzer_engine().get_supported_entities()
def analyze(**kwargs):
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
if "entities" not in kwargs or "All" in kwargs["entities"]:
kwargs["entities"] = None
return analyzer_engine().analyze(**kwargs)
def anonymize(text, analyze_results):
"""Anonymize identified input using Presidio Abonymizer."""
if not text:
return
res = anonymizer_engine().anonymize(text, analyze_results)
return res.text
def annotate(text, st_analyze_results, st_entities):
tokens = []
# sort by start index
results = sorted(st_analyze_results, key=lambda x: x.start)
for i, res in enumerate(results):
if i == 0:
tokens.append(text[:res.start])
# append entity text and entity type
tokens.append((text[res.start: res.end], res.entity_type))
# if another entity coming i.e. we're not at the last results element, add text up to next entity
if i != len(results) - 1:
tokens.append(text[res.end:results[i+1].start])
# if no more entities coming, add all remaining text
else:
tokens.append(text[res.end:])
return tokens
st.set_page_config(page_title="Bitahoy demo", layout="wide")
# Side bar
# add picture with
st.sidebar.image("assets/bitahoy-logo.png", width=200)
st_entities = st.sidebar.multiselect(
label="Which entities to look for?",
options=get_supported_entities(),
default=list(get_supported_entities()),
)
st_threshold = st.sidebar.slider(
label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
)
st_return_decision_process = st.sidebar.checkbox(
"Add analysis explanations in json")
st.sidebar.markdown(
"""
Detect and anonymize PII in text using an [NLP model](https://huggingface.co/beki/en_spacy_pii_distilbert) trained on protocol traces (JSON, SQL, XML etc.) generated by
[Privy](https://github.com/pixie-io/pixie/tree/main/src/datagen/pii/privy) and rule-based classifiers from [Presidio](https://aka.ms/presidio).
"""
)
st.sidebar.info(
"Privy is an open source framework for synthetic data generation in protocol trace formats (json, sql, html etc). Presidio is an open source framework for PII detection and anonymization. "
"For more info visit [privy](https://github.com/pixie-io/pixie/tree/main/src/datagen/pii/privy) and [aka.ms/presidio](https://aka.ms/presidio)"
)
# Main panel
analyzer_load_state = st.info(
"Starting analyzer and loading model...")
engine = analyzer_engine()
analyzer_load_state.empty()
# col?
# Store the initial value of widgets in session state
if "visibility" not in st.session_state:
st.session_state.visibility = "visible"
st.session_state.disabled = False
col1, col2 = st.columns(2)
with col1:
# st.radio(
# "Set selectbox label visibility 👉",
# key="visibility",
# options=["visible", "hidden", "collapsed"],
# )
st_text = st.text_area(
label="Type in some text",
value="SELECT shipping FROM users WHERE shipping = '201 Thayer St Providence RI 02912'"
"\n\n"
"{user: Willie Porter, ip: 192.168.2.80, email: [email protected]}",
height=200,
)
with col2:
st.checkbox("Enable/Disable selectbox widget", key="disabled")
titles, urls, jsons = load_data("assets/data_sorted.csv")
option_list = titles
option = st.selectbox(
"How would you like to be contacted?",
option_list,
# label_visibility=st.session_state.visibility,
disabled=st.session_state.disabled,
)
st.write('You selected:', option)
# end of col
button = st.button("Detect PII")
if 'first_load' not in st.session_state:
st.session_state['first_load'] = True
# After
st.subheader("Analyzed")
with st.spinner("Analyzing..."):
if button or st.session_state.first_load:
st_analyze_results = analyze(
text=st_text,
entities=st_entities,
language="en",
score_threshold=st_threshold,
return_decision_process=st_return_decision_process,
)
annotated_tokens = annotate(st_text, st_analyze_results, st_entities)
# annotated_tokens
annotated_text(*annotated_tokens)
# vertical space
st.text("")
st.subheader("Anonymized")
with st.spinner("Anonymizing..."):
if button or st.session_state.first_load:
st_anonymize_results = anonymize(st_text, st_analyze_results)
st_anonymize_results
# table result
st.subheader("Detailed Findings")
if st_analyze_results:
res_dicts = [r.to_dict() for r in st_analyze_results]
for d in res_dicts:
d['Value'] = st_text[d['start']:d['end']]
df = pd.DataFrame.from_records(res_dicts)
df = df[["entity_type", "Value", "score", "start", "end"]].rename(
{
"entity_type": "Entity type",
"start": "Start",
"end": "End",
"score": "Confidence",
},
axis=1,
)
st.dataframe(df, width=1000)
else:
st.text("No findings")
st.session_state['first_load'] = True
# json result
class ToDictListEncoder(JSONEncoder):
"""Encode dict to json."""
def default(self, o):
"""Encode to JSON using to_dict."""
if o:
return o.to_dict()
return []
if st_return_decision_process:
st.json(json.dumps(st_analyze_results, cls=ToDictListEncoder))
|