Spaces:
Runtime error
Runtime error
File size: 19,276 Bytes
78d7e62 352825c 78d7e62 352825c 78d7e62 c7838e5 352825c 78d7e62 352825c 78d7e62 c7838e5 0d986e2 59ca737 c7838e5 78d7e62 352825c 78d7e62 352825c 78d7e62 352825c 78d7e62 c7838e5 78d7e62 2a2cc4e 352825c 2a2cc4e 352825c 2a2cc4e 78d7e62 2a2cc4e 352825c 2a2cc4e 352825c 59ca737 2a2cc4e 352825c 2a2cc4e 78d7e62 352825c 78d7e62 352825c 78d7e62 352825c 2a2cc4e e3d832d 2a2cc4e e3d832d 2a2cc4e 328779b 78d7e62 352825c 78d7e62 0d986e2 78d7e62 352825c c7838e5 2a2cc4e 352825c c7838e5 352825c c7838e5 352825c c7838e5 352825c 2a2cc4e 352825c 2a2cc4e 352825c 2a2cc4e c7838e5 352825c 78d7e62 352825c 78d7e62 352825c 78d7e62 352825c 78d7e62 352825c 78d7e62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
"""Streamlit app for Presidio + Privy-trained PII models."""
import spacy
import en_spacy_pii_distilbert
from spacy_recognizer import CustomSpacyRecognizer
from presidio_analyzer.nlp_engine import NlpEngineProvider
from presidio_anonymizer import AnonymizerEngine
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
import pandas as pd
from annotated_text import annotated_text
from json import JSONEncoder
import json
import warnings
import streamlit as st
# from streamlit import logger as _logger
import os
import csv
import json
from chatgpt_wrapper import ChatGPT
import time
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings('ignore')
# from flair_recognizer import FlairRecognizer
def load_data(file_location):
unpacked_string_data = []
unpacked_url_data = []
unpacked_json_data = []
# Read the data back from the CSV file and unpack it
with open(file_location, mode='r') as csv_file:
reader = csv.reader(csv_file)
for row in reader:
unpacked_string_data.append(row[0])
unpacked_url_data.append(row[1])
unpacked_json_data.append(json.loads(row[2]))
# print("Unpacked string data:", unpacked_string_data)
# print("Unpacked url data:", unpacked_url_data)
# print("Unpacked JSON data:", unpacked_json_data)
return unpacked_string_data, dict(zip(unpacked_string_data, unpacked_json_data))
# Helper methods
@st.cache_resource #(allow_output_mutation=True)
def analyzer_engine(use_local=None):
"""Return AnalyzerEngine."""
spacy_recognizer = CustomSpacyRecognizer()
if use_local:
# !pip
# install
# https: // huggingface.co / beki / en_spacy_pii_distilbert / resolve / main / en_spacy_pii_distilbert - any - py3 - none - any.whl
# Using spacy.load().
nlp = spacy.load("en_spacy_pii_distilbert")
# Importing as module.
nlp_engine = en_spacy_pii_distilbert.load()
else:
configuration = {
# print("ENALBEE MODELES")
"nlp_engine_name": "spacy",
"models": [
{"lang_code": "en", "model_name": "en_spacy_pii_distilbert"}],
}
# Create NLP engine based on configuration
provider = NlpEngineProvider(nlp_configuration=configuration)
nlp_engine = provider.create_engine()
registry = RecognizerRegistry()
# add rule-based recognizers
registry.load_predefined_recognizers(nlp_engine=nlp_engine)
registry.add_recognizer(spacy_recognizer)
# remove the nlp engine we passed, to use custom label mappings
registry.remove_recognizer("SpacyRecognizer")
analyzer = AnalyzerEngine(nlp_engine=nlp_engine,
registry=registry, supported_languages=["en"])
# uncomment for flair-based NLP recognizer
# flair_recognizer = FlairRecognizer()
# registry.load_predefined_recognizers()
# registry.add_recognizer(flair_recognizer)
# analyzer = AnalyzerEngine(registry=registry, supported_languages=["en"])
return analyzer
@st.cache_resource#(allow_output_mutation=True)
def anonymizer_engine():
"""Return AnonymizerEngine."""
return AnonymizerEngine()
def get_supported_entities():
"""Return supported entities from the Analyzer Engine."""
return analyzer_engine().get_supported_entities()
def analyze(**kwargs):
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
if "entities" not in kwargs or "All" in kwargs["entities"]:
kwargs["entities"] = None
return analyzer_engine().analyze(**kwargs)
def anonymize(text, analyze_results):
"""Anonymize identified input using Presidio Abonymizer."""
if not text:
return
res = anonymizer_engine().anonymize(text, analyze_results)
return res.text
def annotate(text, st_analyze_results, st_entities):
tokens = []
# sort by start index
results = sorted(st_analyze_results, key=lambda x: x.start)
for i, res in enumerate(results):
if i == 0:
tokens.append(text[:res.start])
# append entity text and entity type
tokens.append((text[res.start: res.end], res.entity_type))
# if another entity coming i.e. we're not at the last results element, add text up to next entity
if i != len(results) - 1:
tokens.append(text[res.end:results[i+1].start])
# if no more entities coming, add all remaining text
else:
tokens.append(text[res.end:])
return tokens
st.set_page_config(page_title="Bitahoy demo", layout="wide")
# Side bar -------------------------------------------
# add picture with
st.sidebar.image("structured-data-anonymizer/assets/bitahoy-logo.png", width=200)
st.sidebar.markdown(
"""Detect and anonymize PII in structured text such as protocol traces (JSON, SQL, XML etc.)"""
)
# dropdown
# titles, json_dict = load_data("structured-data-anonymizer/assets/data_s_short.csv")
# option_list = titles
# option = st.sidebar.selectbox(
# 'Choose an existing structured input?',
# option_list)
# dropdown df
# Title,Url,Dict,Prompt,Result
dataframe = pd.read_csv("structured-data-anonymizer/assets/df_data_short.csv")
# select only the third column of the data frame
# select only first column of the data frame
titles = dataframe['Title']
# conver it to a list
titles = titles.values.tolist()
# print(dataframe.iloc[0])
# select first row from dataframe
option_list = titles
# for i in option_list:
# if (dataframe[dataframe['Title'] == i]['Result'].empty):
# i = i + "*"
# print(option_list)
option = st.sidebar.selectbox(
'Choose an existing structured input?',
option_list)
# # st.sidebar.write('You selected:', option)
# json_dict = dataframe['Dict']
# json_dict = json_dict.values.tolist()
sidebar_text = 'Use small icon-button in right corner to copy input to clipboard'
st.sidebar.write(sidebar_text)
json_dict_option = dataframe[dataframe['Title'] == option]['Dict'].values[0]
st.sidebar.code (json_dict_option)
#romans complex dropdown
# st.checkbox("Enable/Disable input of existing data", key="disabled")
#
# option = st.selectbox(
# "Choose an existing structured input?",
# option_list,
# # label_visibility=st.session_state.visibility,
# disabled=st.session_state.disabled,
# )
# st.write('You selected:', option)
st_entities = st.sidebar.multiselect(
label="Which entities to look for?",
options=get_supported_entities(),
default=['PHONE_NUMBER', 'CREDIT_CARD', 'DATE_TIME', 'MEDICAL_LICENSE', 'US_BANK_NUMBER', 'IP_ADDRESS', 'IBAN_CODE', 'LOCATION', 'EMAIL_ADDRESS']
# default=list(get_supported_entities()),
)
# ['PHONE_NUMBER', 'PERSON', 'CRYPTO', 'AU_TFN', 'ORGANIZATION', 'UK_NHS', 'CREDIT_CARD', 'US_DRIVER_LICENSE',
# 'US_SSN', 'URL', 'AU_MEDICARE', 'DATE_TIME', 'NRP', 'US_PASSPORT', 'MEDICAL_LICENSE', 'US_BANK_NUMBER',
# 'IP_ADDRESS', 'IBAN_CODE', 'US_ITIN', 'AU_ACN', 'SG_NRIC_FIN', 'LOCATION', 'AU_ABN', 'EMAIL_ADDRESS']
# st.sidebar.text(list(get_supported_entities()))
st_threshold = st.sidebar.slider(
label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
)
st_return_decision_process = st.sidebar.checkbox(
"Add analysis explanations in json")
api_togg = st.sidebar.checkbox(label='API toggle', value=True)
# vertical space
st.sidebar.text("")
# vertical space
st.sidebar.text("")
st.sidebar.info(
"Privy is an open source framework for synthetic data generation in protocol trace formats (json, sql, html etc). Presidio is an open source framework for PII detection and anonymization. "
"For more info visit [privy](https://github.com/pixie-io/pixie/tree/main/src/datagen/pii/privy) and [aka.ms/presidio](https://aka.ms/presidio)"
)
# Main panel
if 'first_load' not in st.session_state:
st.session_state['first_load'] = True
analyzer_load_state = st.info(
"Starting analyzer and loading model...")
engine = analyzer_engine()
analyzer_load_state.empty()
# Initialization
# if 'bot' not in st.session_state:
# st.sidebar.text("init...")
# st.session_state['bot'] = ChatGPT()
# init_prompt = "i'd like you to act like a snobby AI and tell me what you think of my structured data"
# init_answer = st.session_state['bot'].ask(init_prompt)
# col?
# Store the initial value of widgets in session state
if "visibility" not in st.session_state:
st.session_state.visibility = "visible"
st.session_state.disabled = False
col1, col2 = st.columns(2)
with col1:
st.subheader("Input")
sys_name = st.text_area(
label="Name of the system in question",
value=option,
height=1,
)
st_text = st.text_area(
label= "Structured text used as input",
value = """{ "@timestamp":"2022-06-08T16:54:58.849Z", "alienOTX":{ "firewall":{ "action":"Deny", "category":"AlienVaultFirewallNetworkRule", "icmp":{ "request":{ "code":"8" } }, "operation_name":"AzureFirewallNetworkRuleLog", "path": "http://www.example.com/ab001.zip", }, "resource":{ "group":"TEST-FW-RG", "id":"/SUBSCRIPTIONS/23103928-B2CF-472A-8CDB-FR7630006000011234567890189/RESOURCEGROUPS/TEST-FW-RG/PROVIDERS/MICROSOFT.NETWORK/AZUREFIREWALLS/TEST-FW01", "address":"172.24.0.4", "provider":"SonicWall", "number":"040084913373", "sentto": "[email protected]" }, "subscription_id":"4012888888881881-23103928-B2CF-472A-8CDB-0146E2849129" } }""",
# value="SELECT shipping FROM users WHERE shipping = '201 Thayer St Providence RI 02912'"
# "\n\n"
# "{user: Willie Porter, ip: 192.168.2.80, email: [email protected]}",
height=300,
)
button = st.button("Detect and replace PII")
st.text("""""")
with col2:
st.subheader("Analyzed results with detected entities highlighted")
# st.text("Output text with detected entities highlighted")
with st.spinner("Analyzing..."):
if button or st.session_state.first_load:
option = sys_name
st_analyze_results = analyze(
text=st_text,
entities=st_entities,
language="en",
score_threshold=st_threshold,
return_decision_process=st_return_decision_process,
)
# """
# Ugly hack that checks if last 2 chars as Z" and changes the end of the last entity to -1
# This is done to prevent the anotation to inlcude the quotes for the date4 and breka the json donwtheroad
# ### TODO: make this less hacky?
# """
for i in st_analyze_results:
# st.write(i)
# st.write(st_text[i.end - 2:i.end])
if st_text[i.end-2:i.end] == 'Z"':# and i.type == "DATE_TIME":
i.end = i.end-1
continue
if st_text[i.end-2:i.end] == "Z'":# and i.type == "DATE_TIME":
i.end = i.end-1
continue
# if "'" in st_text[i.start:i.end]:
# st_analyze_results.remove(i)
# continue
# if "," in st_text[i.start:i.end]:
# st_analyze_results.remove(i)
# continue
annotated_tokens = annotate(st_text, st_analyze_results, st_entities)
# annotated_tokens
annotated_text(*annotated_tokens)
# vertical space
st.text("")
st.text("")
with st.expander("Show results with replaced PII and detailed results"):
# st.subheader("Final results with tokens instead if PII")
# vertical space
if button or st.session_state.first_load:
st_anonymize_results = anonymize(st_text, st_analyze_results)
st.write(st_anonymize_results)
# st.write(st_anonymize_results)
# try:
# # st_anonymize_results = ast.literal_eval(st_anonymize_results)
# st.json(st_anonymize_results) #.replace("'", '"'))
# except Json Parse Error as e:
# st.write(st_anonymize_results)
# vertical space
st.text("")
st.subheader("Detailed Findings")
if st_analyze_results:
res_dicts = [r.to_dict() for r in st_analyze_results]
for d in res_dicts:
d['Value'] = st_text[d['start']:d['end']]
df = pd.DataFrame.from_records(res_dicts)
df = df[["entity_type", "Value", "score", "start", "end"]].rename(
{
"entity_type": "Entity type",
"start": "Start",
"end": "End",
"score": "Confidence",
},
axis=1,
)
st.dataframe(df, width=1000) # , height=500)
else:
st.text("No findings")
# st_analyze_results
# end of col
# After the columns
col5, col6 = st.columns(2)
prompt = "Write a summary for a {} event log, based on the given structured JSON input. Start with an executive summary with a short general description of what is a {}, and then focus on the Key Findings, Monitoring Summary, Incident Summary, Threat Summary and Recommendations. Replace any random " \
"strings and tokens in angular-brackets with an approximations to make it more human readable: \"{}\" ".format(
option, option,
st_anonymize_results)
with col5:
st.subheader("Formatting")
button_create = st.button("Create summary")
st.markdown(
"Start with an executive summary and describe what system the log came from, then focus on the Key Findings, Monitoring Summary, Incident Summary, Threat Summary and Recommendations.")
st.text("""""")
with st.expander("Additional inputs"):
st_prompt = st.text_area(
label="Tokenized input with the formatted prompt",
value=prompt,
height=200,
)
write_results = ""
st_output = st.text_area(
label="Record results for later use",
value=write_results,
height=100,
)
button_save = st.button("Save summary to file?")
st.text("""""")
placeholder_table = st.empty()
placeholder_table.write("")
init_prompt = """I want you to act as a cyber security analyst expert. I will provide some specific information about concrete incidents, and it will be your job to come up with a coherent summery of the event, described in this log I give you. You can give a short description and then give strategies for protecting this system from malicious actors, based on the incident data I give you. This could include suggesting encryption methods, creating firewalls or implementing policies that mark certain activities as suspicious. Your summery would be used by decision makers to manage the situation, therefore make informed predictions and formulate them precisely in relation to the event I present to you."""
st_init_prompt = st.text_area(
label="Initial promopt to focus model",
value=init_prompt,
height=100,
)
button_reset = st.button("Reset model setup")
import random
with col6:
st.subheader("Output incident summary")
# effect button_create(button2)
# with st.spinner("button_create..."):
if button_create:
# load existing promp and results
if (not api_togg):
saved_prompt = dataframe[dataframe['Title'] == option]['Prompt'].values[0]
saved_result = dataframe[dataframe['Title'] == option]['Result'].values[0]
else:
saved_prompt = ""
saved_result = ""
# check if match to current prompt
# if re.sub(r"[\n\t\s]*", "", saved_prompt) == re.sub(r"[\n\t\s]*", "", st_prompt):
md_results = ""
with col6:
x = st.empty()
x.markdown("")
# check if saved_prompt is not of a type float
if (not isinstance(saved_prompt, float)) and (not api_togg):
# st.write(saved_prompt)
with col6:
with st.spinner('Fetching results...'):
time.sleep(random.uniform(2.1, 5.8))
# st.write("Prompt already queried in the past, loading result from database")
md_results = saved_result
words = md_results.split()
num_words = len(words)
chunk_size = int(random.uniform(2, 6))
str_placeholder = ""
for i in range(0, num_words, chunk_size):
chunk = ' '.join(words[i:i + chunk_size])
str_placeholder = str_placeholder + " " + chunk
x.markdown(str_placeholder)
# x.markdown(chunk)
time.sleep(random.uniform(0.1, 0.6))
x.markdown(saved_result)
else:
# st.write("New prompt, need GPT")
with col6:
with st.spinner('Generating, please wait...'):
bot = ChatGPT()
# init_answer = bot.ask(init_prompt)
init_points = ""
for chunk in bot.ask_stream(init_prompt):
init_points = init_points + "."
x.markdown(init_points)
x.markdown("")
# st_prompt = "tell me two facts about yourself"
for chunk in bot.ask_stream(st_prompt):
md_results = md_results + chunk
x.markdown(md_results)
#check if last char of chunk is a new line
# if "\n" in chunk:
# x.markdown(md_results)
# st.markdown(chunk)
x.markdown(md_results)
bot._cleanup()
# md_results = bot.ask(st_prompt) #"Hello, could you tell what is {}?".format(option))
# print(md_results) # prints the response from chatGPT
# st.write(st_prompt)
# st.write(saved_prompt)
# md_results = """No result found""" ##here GPT
# with col6:
# # st.subheader("Output incident summary")
# st.markdown(md_results)
placeholder_table.write((dataframe.loc[dataframe['Title'] == option]))
# if button_reset:
# bot = ChatGPT()
# bot._cleanup()
if button_save:
# dataframe = pd.read_csv("structured-data-anonymizer/assets/df_data_short.csv")
# save st_prompt and st_output to dataframe in row for Title = json_dict_option
dataframe.loc[dataframe['Title'] == option, 'Prompt'] = st_prompt
dataframe.loc[dataframe['Title'] == option, 'Result'] = md_results #st_output
# st.write(json_dict_option)
# write dataframe back to the csv file
dataframe.to_csv("structured-data-anonymizer/assets/df_data_short.csv", index=False)
st.write("Saved to file")
st.write(dataframe.loc[dataframe['Title'] == option])
# end of document
st.session_state['first_load'] = True
class ToDictListEncoder(JSONEncoder):
"""Encode dict to json."""
def default(self, o):
"""Encode to JSON using to_dict."""
if o:
return o.to_dict()
return []
if st_return_decision_process:
st.json(json.dumps(st_analyze_results, cls=ToDictListEncoder))
|