rotaba
more sidebar fixes
e3d832d
raw
history blame
8.48 kB
"""Streamlit app for Presidio + Privy-trained PII models."""
import spacy
from spacy_recognizer import CustomSpacyRecognizer
from presidio_analyzer.nlp_engine import NlpEngineProvider
from presidio_anonymizer import AnonymizerEngine
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
import pandas as pd
from annotated_text import annotated_text
from json import JSONEncoder
import json
import warnings
import streamlit as st
import os
import csv
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings('ignore')
# from flair_recognizer import FlairRecognizer
def load_data(file_location):
unpacked_string_data = []
unpacked_url_data = []
unpacked_json_data = []
# Read the data back from the CSV file and unpack it
with open(file_location, mode='r') as csv_file:
reader = csv.reader(csv_file)
for row in reader:
unpacked_string_data.append(row[0])
unpacked_url_data.append(row[1])
unpacked_json_data.append(json.loads(row[2]))
# print("Unpacked string data:", unpacked_string_data)
# print("Unpacked url data:", unpacked_url_data)
# print("Unpacked JSON data:", unpacked_json_data)
return unpacked_string_data, dict(zip(unpacked_string_data, unpacked_json_data))
# Helper methods
@st.cache(allow_output_mutation=True)
def analyzer_engine():
"""Return AnalyzerEngine."""
spacy_recognizer = CustomSpacyRecognizer()
configuration = {
# print("ENALBEE MODELES")
"nlp_engine_name": "spacy",
"models": [
{"lang_code": "en", "model_name": "en_spacy_pii_distilbert"}],
}
# Create NLP engine based on configuration
provider = NlpEngineProvider(nlp_configuration=configuration)
nlp_engine = provider.create_engine()
registry = RecognizerRegistry()
# add rule-based recognizers
registry.load_predefined_recognizers(nlp_engine=nlp_engine)
registry.add_recognizer(spacy_recognizer)
# remove the nlp engine we passed, to use custom label mappings
registry.remove_recognizer("SpacyRecognizer")
analyzer = AnalyzerEngine(nlp_engine=nlp_engine,
registry=registry, supported_languages=["en"])
# uncomment for flair-based NLP recognizer
# flair_recognizer = FlairRecognizer()
# registry.load_predefined_recognizers()
# registry.add_recognizer(flair_recognizer)
# analyzer = AnalyzerEngine(registry=registry, supported_languages=["en"])
return analyzer
@st.cache(allow_output_mutation=True)
def anonymizer_engine():
"""Return AnonymizerEngine."""
return AnonymizerEngine()
def get_supported_entities():
"""Return supported entities from the Analyzer Engine."""
return analyzer_engine().get_supported_entities()
def analyze(**kwargs):
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
if "entities" not in kwargs or "All" in kwargs["entities"]:
kwargs["entities"] = None
return analyzer_engine().analyze(**kwargs)
def anonymize(text, analyze_results):
"""Anonymize identified input using Presidio Abonymizer."""
if not text:
return
res = anonymizer_engine().anonymize(text, analyze_results)
return res.text
def annotate(text, st_analyze_results, st_entities):
tokens = []
# sort by start index
results = sorted(st_analyze_results, key=lambda x: x.start)
for i, res in enumerate(results):
if i == 0:
tokens.append(text[:res.start])
# append entity text and entity type
tokens.append((text[res.start: res.end], res.entity_type))
# if another entity coming i.e. we're not at the last results element, add text up to next entity
if i != len(results) - 1:
tokens.append(text[res.end:results[i+1].start])
# if no more entities coming, add all remaining text
else:
tokens.append(text[res.end:])
return tokens
st.set_page_config(page_title="Bitahoy demo", layout="wide")
# Side bar -------------------------------------------
st.sidebar.markdown(
"""
Detect and anonymize PII in structured text such as protocol traces (JSON, SQL, XML etc.)
"""
)
# add picture with
st.sidebar.image("assets/bitahoy-logo.png", width=200)
# dropdown
titles, json_dict = load_data("assets/data_sorted.csv")
option_list = titles
option = st.sidebar.selectbox(
'Choose an existing structured input?',
option_list)
# st.sidebar.write('You selected:', option)
st.sidebar.code (json_dict[option])
st.sidebar.write('Use button to copy input to clipboard')
#romans complex dropdown
# st.checkbox("Enable/Disable input of existing data", key="disabled")
#
# option = st.selectbox(
# "Choose an existing structured input?",
# option_list,
# # label_visibility=st.session_state.visibility,
# disabled=st.session_state.disabled,
# )
# st.write('You selected:', option)
st_entities = st.sidebar.multiselect(
label="Which entities to look for?",
options=get_supported_entities(),
default=list(get_supported_entities()),
)
st_threshold = st.sidebar.slider(
label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
)
st_return_decision_process = st.sidebar.checkbox(
"Add analysis explanations in json")
button = st.sidebar.button("Detect PII")
# vertical space
st.sidebar.text("")
# vertical space
st.sidebar.text("")
st.sidebar.info(
"Privy is an open source framework for synthetic data generation in protocol trace formats (json, sql, html etc). Presidio is an open source framework for PII detection and anonymization. "
"For more info visit [privy](https://github.com/pixie-io/pixie/tree/main/src/datagen/pii/privy) and [aka.ms/presidio](https://aka.ms/presidio)"
)
# Main panel
analyzer_load_state = st.info(
"Starting analyzer and loading model...")
engine = analyzer_engine()
analyzer_load_state.empty()
# col?
# Store the initial value of widgets in session state
if "visibility" not in st.session_state:
st.session_state.visibility = "visible"
st.session_state.disabled = False
col1, col2 = st.columns(2)
with col1:
st.subheader("Input")
# st.radio(
# "Set selectbox label visibility 👉",
# key="visibility",
# options=["visible", "hidden", "collapsed"],
# )
# st.json({ })
st_text = st.text_area(
label="Type in some text",
value="SELECT shipping FROM users WHERE shipping = '201 Thayer St Providence RI 02912'"
"\n\n"
"{user: Willie Porter, ip: 192.168.2.80, email: [email protected]}",
height=200,
)
with col2:
st.subheader("Analyzed")
with st.spinner("Analyzing..."):
if button or st.session_state.first_load:
st_analyze_results = analyze(
text=st_text,
entities=st_entities,
language="en",
score_threshold=st_threshold,
return_decision_process=st_return_decision_process,
)
annotated_tokens = annotate(st_text, st_analyze_results, st_entities)
# annotated_tokens
annotated_text(*annotated_tokens)
# end of col
if 'first_load' not in st.session_state:
st.session_state['first_load'] = True
# After
st.subheader("Anonymized final results")
with st.spinner("Anonymizing..."):
if button or st.session_state.first_load:
st_anonymize_results = anonymize(st_text, st_analyze_results)
st_anonymize_results
# table result
st.subheader("Detailed Findings")
if st_analyze_results:
res_dicts = [r.to_dict() for r in st_analyze_results]
for d in res_dicts:
d['Value'] = st_text[d['start']:d['end']]
df = pd.DataFrame.from_records(res_dicts)
df = df[["entity_type", "Value", "score", "start", "end"]].rename(
{
"entity_type": "Entity type",
"start": "Start",
"end": "End",
"score": "Confidence",
},
axis=1,
)
st.dataframe(df, width=1000)
else:
st.text("No findings")
st.session_state['first_load'] = True
# json result
class ToDictListEncoder(JSONEncoder):
"""Encode dict to json."""
def default(self, o):
"""Encode to JSON using to_dict."""
if o:
return o.to_dict()
return []
if st_return_decision_process:
st.json(json.dumps(st_analyze_results, cls=ToDictListEncoder))