Rouhani2025's picture
Create app.py
f890380 verified
raw
history blame
1.33 kB
import gradio as gr
import whisper
from transformers import pipeline
# Load Whisper model
whisper_model = whisper.load_model("base", device="cpu")
# Load the text correction model
correction_pipeline = pipeline("text2text-generation", model="tiiuae/falcon-7b-instruct", device=-1)
# Function to preprocess audio and transcribe it using Whisper
def transcribe_audio(audio_file):
transcription = whisper_model.transcribe(audio_file)
return transcription["text"]
# Function to correct grammar in text
def correct_text(raw_text):
corrected = correction_pipeline(raw_text, max_length=200, num_return_sequences=1)[0]["generated_text"]
return corrected
# Function to process the pipeline
def process_pipeline(audio_file):
raw_transcription = transcribe_audio(audio_file)
corrected_transcription = correct_text(raw_transcription)
return raw_transcription, corrected_transcription
# Gradio Interface
interface = gr.Interface(
fn=process_pipeline,
inputs=gr.Audio(type="filepath", label="Upload Audio"),
outputs=[
gr.Textbox(label="Raw Transcription"),
gr.Textbox(label="Corrected Transcription"),
],
title="Speech Correction Demo",
description="Upload an audio file to see raw transcription and grammar-corrected output.",
)
# Launch the app
interface.launch()