File size: 7,519 Bytes
e66dc34 53eafd4 e66dc34 322b9fb e66dc34 322b9fb e66dc34 322b9fb e66dc34 322b9fb f2d32d6 322b9fb f2d32d6 322b9fb e66dc34 d8cefc4 e66dc34 d8cefc4 e66dc34 d8cefc4 e66dc34 d8cefc4 e66dc34 322b9fb e66dc34 322b9fb e66dc34 322b9fb e66dc34 322b9fb e66dc34 322b9fb e66dc34 322b9fb e66dc34 322b9fb e66dc34 322b9fb e66dc34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import panel as pn
import pandas as pd
import os
from consts import INVERTER_ID_MAPPING, TEMPERATURE_COLUMNS_TO_USE
from plotting import (
create_heatmap,
create_iv_plot_with_power_curves,
create_iv_plot,
create_iv_plot_with_power_and_temperature_curves,
create_iv_plot_with_temperature_curves,
)
# Function to load chunked data based on date range
def load_timeseries_data(start_date, end_date):
file_name = f"enel_timeseries_data_{start_date}_{end_date}.csv"
return pd.read_csv(file_name, index_col=0, header=[0, 1, 2], parse_dates=True)
def load_other_features_data(start_date, end_date):
file_name = f"enel_other_features_data_{start_date}_{end_date}.csv"
return pd.read_csv(file_name, index_col=0, header=0, parse_dates=True)
kpi_data = pd.read_csv(
r"kpi_data.csv", index_col=0, header=0, parse_dates=True
)
# Initialize Panel extension
pn.extension("plotly")
# Widgets for selecting date range and columns
date_range_picker = pn.widgets.DateRangePicker(
name='Date Range',
start=pd.Timestamp('2022-09-01'),
end=pd.Timestamp('2023-08-31'),
value=(start, end + pd.DateOffset(months=1))
)
inverter_ids = pn.widgets.MultiSelect(
name="Inverter IDs",
value=[list(INVERTER_ID_MAPPING.keys())[0]],
options=list(INVERTER_ID_MAPPING.keys()),
size=8,
)
# Line Plots
plot_power_curves = pn.widgets.Checkbox(name="Plot P-dc and P-ac", value=False)
plot_temperature_curves = pn.widgets.Checkbox(name="Plot Temperatures", value=False)
# Heatmaps
heatmap_pr = pn.widgets.Checkbox(name="Heat Map PR", value=False)
heatmap_sy = pn.widgets.Checkbox(name="Heat Map SY", value=False)
heatmap_current = pn.widgets.Checkbox(name="Heat Map - Current", value=False)
heatmap_voltage = pn.widgets.Checkbox(name="Heat Map - Voltage", value=False)
heatmap_power = pn.widgets.Checkbox(name="Heat Map - Power", value=False)
heatmap_irradiance = pn.widgets.Checkbox(name="Heat Map - Irradiance", value=False)
heatmap_temperature = pn.widgets.Checkbox(
name="Heat Map - Temperature " "Heatsink", value=False
)
# Create a loading spinner
loading_spinner = pn.indicators.LoadingSpinner(width=50, height=50)
# Panel interactive functions
@pn.depends(
inverter_ids.param.value,
plot_power_curves.param.value,
plot_temperature_curves.param.value,
date_range_picker.param.value
)
def update_iv_plot(inverter_ids, plot_power_curves, plot_temperature_curves, date_range):
start_date, end_date = date_range
timeseries_data = load_timeseries_data(start_date, end_date)
other_features_data = load_other_features_data(start_date, end_date)
if not inverter_ids:
return pn.pane.Markdown("No Inverters selected for Plotting.")
else:
# Plot IV + Power + Temperature Curves
if plot_power_curves and plot_temperature_curves:
print("Plotting IV + Power + Temperature Curves")
return create_iv_plot_with_power_and_temperature_curves(
timeseries_data, other_features_data, inverter_ids
)
# Plot IV + Temperature Curves
elif (not plot_power_curves) and plot_temperature_curves:
print("Plot IV + Temperature Curves")
return create_iv_plot_with_temperature_curves(
timeseries_data, other_features_data, inverter_ids
)
# Plot IV + Power Curves
elif plot_power_curves and (not plot_temperature_curves):
print("Plot IV + Power Curves")
return create_iv_plot_with_power_curves(timeseries_data, inverter_ids)
# Plot only IV Curves
else:
print("Plot only IV Curves")
return create_iv_plot(timeseries_data, inverter_ids)
@pn.depends(heatmap_pr.param.value)
def update_heatmap_pr(heatmap_pr):
if heatmap_pr:
pr_df = kpi_data.filter(like="pr")
pr_df.columns = [i.split("-")[1] for i in pr_df.columns]
pr_heatmap = create_heatmap(pr_df, "PR Heatmap")
return pn.Row(pr_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_sy.param.value)
def update_heatmap_sy(heatmap_sy):
if heatmap_sy:
sy_df = kpi_data.filter(like="daily_specific_yield")
sy_df.columns = [i.split("-")[1] for i in sy_df.columns]
sy_heatmap = create_heatmap(sy_df, "SY Heatmap")
return pn.Row(sy_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_current.param.value)
def update_heatmap_current(heatmap_current):
if heatmap_current:
current_df = daily_timeseries_data.filter(like="I")
current_df.columns = [i.split("-")[1] for i in current_df.columns]
current_heatmap = create_heatmap(current_df, "Current Heatmap")
return pn.Row(current_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_voltage.param.value)
def update_heatmap_voltage(heatmap_voltage):
if heatmap_voltage:
voltage_df = daily_timeseries_data.filter(like="V")
voltage_df.columns = [i.split("-")[1] for i in voltage_df.columns]
voltage_heatmap = create_heatmap(voltage_df, "Voltage Heatmap")
return pn.Row(voltage_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_power.param.value)
def update_heatmap_power(heatmap_power):
if heatmap_power:
power_df = daily_timeseries_data.filter(like="P")
power_df.columns = [i.split("-")[1] for i in power_df.columns]
power_heatmap = create_heatmap(power_df, "Power Heatmap")
return pn.Row(power_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_irradiance.param.value)
def update_heatmap_irradiance(heatmap_irradiance):
if heatmap_irradiance:
irradiance_df = daily_timeseries_data.filter(like="G")
irradiance_df.columns = [i.split("-")[1] for i in irradiance_df.columns]
irradiance_heatmap = create_heatmap(irradiance_df, "Irradiance " "Heatmap")
return pn.Row(irradiance_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_temperature.param.value)
def update_heatmap_temperature(heatmap_temperature):
if heatmap_temperature:
temp_df = daily_timeseries_data.filter(like="THeatSink")
temp_df.columns = [i.split("-")[1] for i in temp_df.columns]
temp_heatmap = create_heatmap(temp_df, "T-Heatsink Heatmap")
return pn.Row(temp_heatmap)
return pn.pane.Markdown("")
# Create dashboard layout
dashboard = pn.Column(
"# ENEL Dashboard",
# IV Plots
pn.Row(
pn.Column(inverter_ids, plot_power_curves, plot_temperature_curves),
pn.panel(update_iv_plot, sizing_mode="stretch_width"),
),
# Heatmaps
pn.Row(
pn.Column(heatmap_pr), pn.panel(update_heatmap_pr, sizing_mode="stretch_width")
),
pn.Row(
pn.Column(heatmap_sy), pn.panel(update_heatmap_sy, sizing_mode="stretch_width")
),
pn.Row(
pn.Column(heatmap_current),
pn.panel(update_heatmap_current, sizing_mode="stretch_width"),
),
pn.Row(
pn.Column(heatmap_voltage),
pn.panel(update_heatmap_voltage, sizing_mode="stretch_width"),
),
pn.Row(
pn.Column(heatmap_power),
pn.panel(update_heatmap_power, sizing_mode="stretch_width"),
),
pn.Row(
pn.Column(heatmap_irradiance),
pn.panel(update_heatmap_irradiance, sizing_mode="stretch_width"),
),
pn.Row(
pn.Column(heatmap_temperature),
pn.panel(update_heatmap_temperature, sizing_mode="stretch_width"),
),
)
# Serve the dashboard
dashboard.servable()
|