File size: 9,250 Bytes
d5ad93b 54724f8 d5ad93b 4fce4a6 9b304a8 d5ad93b 54724f8 d5ad93b 4fce4a6 d5ad93b 54724f8 d5ad93b 54724f8 d5ad93b 4fce4a6 d5ad93b 4fce4a6 d5ad93b 4fce4a6 d5ad93b 4fce4a6 d5ad93b 4fce4a6 d5ad93b 4fce4a6 d5ad93b 4fce4a6 5f40a6b 4fce4a6 d5ad93b 4fce4a6 d5ad93b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import panel as pn
import pandas as pd
import os
from consts import INVERTER_ID_MAPPING, TEMPERATURE_COLUMNS_TO_USE, CURRENT, IRRADIANCE, VOLTAGE, POWER_DC, POWER_AC, T_AMBIENT, T_MODULE, T_HEATSINK, T_CPU, T_BOARD
from plotting import (
create_heatmap,
create_iv_plot_with_power_curves,
create_iv_plot,
create_iv_plot_with_power_and_temperature_curves,
create_iv_plot_with_temperature_curves,
)
# Function to load chunked data based on month selection
def load_timeseries_data_for_month(month):
start_date = pd.to_datetime(month).strftime('%Y-%m-01')
end_date = (pd.to_datetime(month) + pd.offsets.MonthEnd()).strftime('%Y-%m-%d')
file_name = f"enel_timeseries_data_{start_date}_{end_date}.csv"
if not os.path.exists(file_name):
return None, file_name
return pd.read_csv(file_name, index_col=0, header=[0, 2], parse_dates=True), file_name
def load_other_features_data_for_month(month):
start_date = pd.to_datetime(month).strftime('%Y-%m-01')
end_date = (pd.to_datetime(month) + pd.offsets.MonthEnd()).strftime('%Y-%m-%d')
file_name = f"enel_other_features_data_{start_date}_{end_date}.csv"
if not os.path.exists(file_name):
return None, file_name
return pd.read_csv(file_name, index_col=0, header=0, parse_dates=True), file_name
# Define the available months
months = pd.date_range(start='2022-09-01', end='2023-08-31', freq='MS').strftime('%Y-%m').tolist()
kpi_data = pd.read_csv(
r"kpi_data.csv", index_col=0, header=0, parse_dates=True
)
daily_timeseries_data = pd.read_csv(
r"daily_aggregated_timeseries_data.csv",
index_col=0,
header=0,
parse_dates=True,
)
# Initialize Panel extension
pn.extension("plotly")
# Widgets for selecting month and columns
month_selector = pn.widgets.Select(
name='Choose a Month',
options=months,
)
inverter_ids = pn.widgets.MultiSelect(
name="Inverter IDs",
options=list(INVERTER_ID_MAPPING.keys()),
size=8,
disabled=True,
)
# Line Plots
plot_power_curves = pn.widgets.Checkbox(name="Plot P-dc and P-ac", value=False, disabled=True)
plot_temperature_curves = pn.widgets.Checkbox(name="Plot Temperatures", value=False, disabled=True)
# Heatmaps
heatmap_pr = pn.widgets.Checkbox(name="Heat Map PR", value=False)
heatmap_sy = pn.widgets.Checkbox(name="Heat Map SY", value=False)
heatmap_current = pn.widgets.Checkbox(name="Heat Map - Current", value=False)
heatmap_voltage = pn.widgets.Checkbox(name="Heat Map - Voltage", value=False)
heatmap_power = pn.widgets.Checkbox(name="Heat Map - Power", value=False)
heatmap_irradiance = pn.widgets.Checkbox(name="Heat Map - Irradiance", value=False)
heatmap_temperature = pn.widgets.Checkbox(name="Heat Map - Temperature Heatsink", value=False)
# Create a loading spinner
loading_spinner = pn.indicators.LoadingSpinner(width=50, height=50, visible=False)
# Global variables to store loaded data
loaded_timeseries_data = None
loaded_other_features_data = None
loaded_month = None
# Function to load data based on selected month
@pn.depends(month_selector.param.value, watch=True)
def load_data(selected_month):
global loaded_timeseries_data, loaded_other_features_data, loaded_month
if not selected_month:
return
loading_spinner.visible = True
timeseries_data, timeseries_file = load_timeseries_data_for_month(selected_month)
other_features_data, other_features_file = load_other_features_data_for_month(selected_month)
if timeseries_data is None or other_features_data is None:
loading_spinner.visible = False
return pn.pane.Markdown(f"Files not found: {timeseries_file if timeseries_data is None else ''} {other_features_file if other_features_data is None else ''}")
loaded_timeseries_data = timeseries_data
loaded_other_features_data = other_features_data
loaded_month = selected_month
loading_spinner.visible = False
inverter_ids.disabled = False
plot_power_curves.disabled = False
plot_temperature_curves.disabled = False
return pn.pane.Markdown(f"Data loaded for month: {selected_month}")
# Panel interactive functions
@pn.depends(
inverter_ids.param.value,
plot_power_curves.param.value,
plot_temperature_curves.param.value
)
def update_iv_plot(inverter_ids, plot_power_curves, plot_temperature_curves):
if loaded_timeseries_data is None or loaded_other_features_data is None:
return pn.pane.Markdown("No data loaded.")
if not inverter_ids:
return pn.pane.Markdown("No Inverters selected for Plotting.")
else:
# Plot IV + Power + Temperature Curves
if plot_power_curves and plot_temperature_curves:
return create_iv_plot_with_power_and_temperature_curves(
loaded_timeseries_data, loaded_other_features_data, inverter_ids
)
# Plot IV + Temperature Curves
elif (not plot_power_curves) and plot_temperature_curves:
return create_iv_plot_with_temperature_curves(
loaded_timeseries_data, loaded_other_features_data, inverter_ids
)
# Plot IV + Power Curves
elif plot_power_curves and (not plot_temperature_curves):
return create_iv_plot_with_power_curves(loaded_timeseries_data, inverter_ids)
# Plot only IV Curves
else:
return create_iv_plot(loaded_timeseries_data, inverter_ids)
@pn.depends(heatmap_pr.param.value)
def update_heatmap_pr(heatmap_pr):
if heatmap_pr:
pr_df = kpi_data.filter(like="pr")
pr_df.columns = [i.split("-")[1] for i in pr_df.columns]
pr_heatmap = create_heatmap(pr_df, "PR Heatmap")
return pn.Row(pr_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_sy.param.value)
def update_heatmap_sy(heatmap_sy):
if heatmap_sy:
sy_df = kpi_data.filter(like="daily_specific_yield")
sy_df.columns = [i.split("-")[1] for i in sy_df.columns]
sy_heatmap = create_heatmap(sy_df, "SY Heatmap")
return pn.Row(sy_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_current.param.value)
def update_heatmap_current(heatmap_current):
if heatmap_current:
current_df = daily_timeseries_data.filter(like="I")
current_df.columns = [i.split("-")[1] for i in current_df.columns]
current_heatmap = create_heatmap(current_df, "Current Heatmap")
return pn.Row(current_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_voltage.param.value)
def update_heatmap_voltage(heatmap_voltage):
if heatmap_voltage:
voltage_df = daily_timeseries_data.filter(like="V")
voltage_df.columns = [i.split("-")[1] for i in voltage_df.columns]
voltage_heatmap = create_heatmap(voltage_df, "Voltage Heatmap")
return pn.Row(voltage_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_power.param.value)
def update_heatmap_power(heatmap_power):
if heatmap_power:
power_df = daily_timeseries_data.filter(like="P")
power_df.columns = [i.split("-")[1] for i in power_df.columns]
power_heatmap = create_heatmap(power_df, "Power Heatmap")
return pn.Row(power_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_irradiance.param.value)
def update_heatmap_irradiance(heatmap_irradiance):
if heatmap_irradiance:
irradiance_df = daily_timeseries_data.filter(like="G")
irradiance_df.columns = [i.split("-")[1] for i in irradiance_df.columns]
irradiance_heatmap = create_heatmap(irradiance_df, "Irradiance Heatmap")
return pn.Row(irradiance_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_temperature.param.value)
def update_heatmap_temperature(heatmap_temperature):
if heatmap_temperature:
temp_df = daily_timeseries_data.filter(like="THeatSink")
temp_df.columns = [i.split("-")[1] for i in temp_df.columns]
temp_heatmap = create_heatmap(temp_df, "T-Heatsink Heatmap")
return pn.Row(temp_heatmap)
return pn.pane.Markdown("")
# Create dashboard layout
dashboard = pn.Column(
"# ENEL Dashboard",
month_selector,
loading_spinner,
pn.panel(load_data),
# IV Plots
pn.Row(
pn.Column(inverter_ids, plot_power_curves, plot_temperature_curves),
pn.panel(update_iv_plot, sizing_mode="stretch_width"),
),
# Heatmaps
pn.Row(
pn.Column(heatmap_pr), pn.panel(update_heatmap_pr, sizing_mode="stretch_width")
),
pn.Row(
pn.Column(heatmap_sy), pn.panel(update_heatmap_sy, sizing_mode="stretch_width")
),
pn.Row(
pn.Column(heatmap_current),
pn.panel(update_heatmap_current, sizing_mode="stretch_width"),
),
pn.Row(
pn.Column(heatmap_voltage),
pn.panel(update_heatmap_voltage, sizing_mode="stretch_width"),
),
pn.Row(
pn.Column(heatmap_power),
pn.panel(update_heatmap_power, sizing_mode="stretch_width"),
),
pn.Row(
pn.Column(heatmap_irradiance),
pn.panel(update_heatmap_irradiance, sizing_mode="stretch_width"),
),
pn.Row(
pn.Column(heatmap_temperature),
pn.panel(update_heatmap_temperature, sizing_mode="stretch_width"),
),
)
# Serve the dashboard
dashboard.servable()
|