SynGen / syngen_diffusion_pipeline.py
Royir's picture
Update syngen_diffusion_pipeline.py
c35de76
raw
history blame
23.1 kB
import itertools
from typing import Any, Callable, Dict, Optional, Union, List
import spacy
import torch
from diffusers import StableDiffusionPipeline, AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import (
EXAMPLE_DOC_STRING,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_attend_and_excite import (
AttentionStore,
AttendExciteCrossAttnProcessor,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
logging,
replace_example_docstring,
)
from transformers import CLIPTextModel, CLIPTokenizer, CLIPFeatureExtractor
from compute_loss import get_attention_map_index_to_wordpiece, split_indices, calculate_positive_loss, calculate_negative_loss, get_indices, start_token, end_token, align_wordpieces_indices, extract_attribution_indices, extract_attribution_indices_with_verbs, extract_attribution_indices_with_verb_root
logger = logging.get_logger(__name__)
class SynGenDiffusionPipeline(StableDiffusionPipeline):
def __init__(self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
requires_safety_checker: bool = True,
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor,
requires_safety_checker)
self.parser = spacy.load("en_core_web_trf")
self.subtrees_indices = None
self.doc = None
# self.doc = ""#self.parser(prompt)
def _aggregate_and_get_attention_maps_per_token(self):
attention_maps = self.attention_store.aggregate_attention(
from_where=("up", "down", "mid"),
)
attention_maps_list = _get_attention_maps_list(
attention_maps=attention_maps
)
return attention_maps_list
@staticmethod
def _update_latent(
latents: torch.Tensor, loss: torch.Tensor, step_size: float
) -> torch.Tensor:
"""Update the latent according to the computed loss."""
grad_cond = torch.autograd.grad(
loss.requires_grad_(True), [latents], retain_graph=True
)[0]
latents = latents - step_size * grad_cond
return latents
def register_attention_control(self):
attn_procs = {}
cross_att_count = 0
for name in self.unet.attn_processors.keys():
if name.startswith("mid_block"):
place_in_unet = "mid"
elif name.startswith("up_blocks"):
place_in_unet = "up"
elif name.startswith("down_blocks"):
place_in_unet = "down"
else:
continue
cross_att_count += 1
attn_procs[name] = AttendExciteCrossAttnProcessor(
attnstore=self.attention_store, place_in_unet=place_in_unet
)
self.unet.set_attn_processor(attn_procs)
self.attention_store.num_att_layers = cross_att_count
# Based on StableDiffusionPipeline.__call__ . New code is annotated with NEW.
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
syngen_step_size: float = 20.0,
parsed_prompt: str=None
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
syngen_step_size (`float`, *optional*, default to 20.0):
Controls the step size of each SynGen update.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
if parsed_prompt:
self.doc = parsed_prompt
else:
self.doc = self.parser(prompt)
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# NEW - stores the attention calculated in the unet
self.attention_store = AttentionStore()
self.register_attention_control()
# NEW
text_embeddings = (
prompt_embeds[batch_size * num_images_per_prompt:] if do_classifier_free_guidance else prompt_embeds
)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# NEW
if i < 25:
latents = self._syngen_step(
latents,
text_embeddings,
t,
i,
syngen_step_size,
cross_attention_kwargs,
prompt,
max_iter_to_alter=25,
)
# expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == "latent":
image = latents
has_nsfw_concept = None
elif output_type == "pil":
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(
image, device, prompt_embeds.dtype
)
# 10. Convert to PIL
image = self.numpy_to_pil(image)
else:
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(
image, device, prompt_embeds.dtype
)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
self.doc = None
self.subtrees_indices = None
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(
images=image, nsfw_content_detected=has_nsfw_concept
)
def _syngen_step(
self,
latents,
text_embeddings,
t,
i,
step_size,
cross_attention_kwargs,
prompt,
max_iter_to_alter=25,
):
with torch.enable_grad():
latents = latents.clone().detach().requires_grad_(True)
updated_latents = []
for latent, text_embedding in zip(latents, text_embeddings):
# Forward pass of denoising with text conditioning
latent = latent.unsqueeze(0)
text_embedding = text_embedding.unsqueeze(0)
self.unet(
latent,
t,
encoder_hidden_states=text_embedding,
cross_attention_kwargs=cross_attention_kwargs,
).sample
self.unet.zero_grad()
# Get attention maps
attention_maps = self._aggregate_and_get_attention_maps_per_token()
loss = self._compute_loss(attention_maps=attention_maps, prompt=prompt)
# Perform gradient update
if i < max_iter_to_alter:
if loss != 0:
latent = self._update_latent(
latents=latent, loss=loss, step_size=step_size
)
logger.info(f"Iteration {i} | Loss: {loss:0.4f}")
updated_latents.append(latent)
latents = torch.cat(updated_latents, dim=0)
return latents
def _compute_loss(
self, attention_maps: List[torch.Tensor], prompt: Union[str, List[str]]
) -> torch.Tensor:
attn_map_idx_to_wp = get_attention_map_index_to_wordpiece(self.tokenizer, prompt)
loss = self._attribution_loss(attention_maps, prompt, attn_map_idx_to_wp)
return loss
def _attribution_loss(
self,
attention_maps: List[torch.Tensor],
prompt: Union[str, List[str]],
attn_map_idx_to_wp,
) -> torch.Tensor:
if not self.subtrees_indices:
self.subtrees_indices = self._extract_attribution_indices(prompt)
subtrees_indices = self.subtrees_indices
loss = 0
for subtree_indices in subtrees_indices:
noun, modifier = split_indices(subtree_indices)
all_subtree_pairs = list(itertools.product(noun, modifier))
positive_loss, negative_loss = self._calculate_losses(
attention_maps,
all_subtree_pairs,
subtree_indices,
attn_map_idx_to_wp,
)
loss += positive_loss
loss += negative_loss
return loss
def _calculate_losses(
self,
attention_maps,
all_subtree_pairs,
subtree_indices,
attn_map_idx_to_wp,
):
positive_loss = []
negative_loss = []
for pair in all_subtree_pairs:
noun, modifier = pair
positive_loss.append(
calculate_positive_loss(attention_maps, modifier, noun)
)
negative_loss.append(
calculate_negative_loss(
attention_maps, modifier, noun, subtree_indices, attn_map_idx_to_wp
)
)
positive_loss = sum(positive_loss)
negative_loss = sum(negative_loss)
return positive_loss, negative_loss
def _align_indices(self, prompt, spacy_pairs):
wordpieces2indices = get_indices(self.tokenizer, prompt)
paired_indices = []
collected_spacy_indices = (
set()
) # helps track recurring nouns across different relations (i.e., cases where there is more than one instance of the same word)
for pair in spacy_pairs:
curr_collected_wp_indices = (
[]
) # helps track which nouns and amods were added to the current pair (this is useful in sentences with repeating amod on the same relation (e.g., "a red red red bear"))
for member in pair:
for idx, wp in wordpieces2indices.items():
if wp in [start_token, end_token]:
continue
wp = wp.replace("</w>", "")
if member.text == wp:
if idx not in curr_collected_wp_indices and idx not in collected_spacy_indices:
curr_collected_wp_indices.append(idx)
break
# take care of wordpieces that are split up
elif member.text.startswith(wp) and wp != member.text: # can maybe be while loop
wp_indices = align_wordpieces_indices(
wordpieces2indices, idx, member.text
)
# check if all wp_indices are not already in collected_spacy_indices
if wp_indices and (wp_indices not in curr_collected_wp_indices) and all([wp_idx not in collected_spacy_indices for wp_idx in wp_indices]):
curr_collected_wp_indices.append(wp_indices)
break
for collected_idx in curr_collected_wp_indices:
if isinstance(collected_idx, list):
for idx in collected_idx:
collected_spacy_indices.add(idx)
else:
collected_spacy_indices.add(collected_idx)
paired_indices.append(curr_collected_wp_indices)
return paired_indices
def _extract_attribution_indices(self, prompt):
# extract standard attribution indices
pairs = extract_attribution_indices(self.doc)
# extract attribution indices with verbs in between
pairs_2 = extract_attribution_indices_with_verb_root(self.doc)
pairs_3 = extract_attribution_indices_with_verbs(self.doc)
# make sure there are no duplicates
pairs = unify_lists(pairs, pairs_2, pairs_3)
print(f"Final pairs collected: {pairs}")
paired_indices = self._align_indices(prompt, pairs)
return paired_indices
def _get_attention_maps_list(
attention_maps: torch.Tensor
) -> List[torch.Tensor]:
attention_maps *= 100
attention_maps_list = [
attention_maps[:, :, i] for i in range(attention_maps.shape[2])
]
return attention_maps_list
def is_sublist(sub, main):
# This function checks if 'sub' is a sublist of 'main'
return len(sub) < len(main) and all(item in main for item in sub)
def unify_lists(lists_1, lists_2, lists_3):
unified_list = lists_1 + lists_2 + lists_3
sorted_list = sorted(unified_list, key=len)
seen = set()
result = []
for i in range(len(sorted_list)):
if tuple(sorted_list[i]) in seen: # Skip if already added
continue
sublist_to_add = True
for j in range(i + 1, len(sorted_list)):
if is_sublist(sorted_list[i], sorted_list[j]):
sublist_to_add = False
break
if sublist_to_add:
result.append(sorted_list[i])
seen.add(tuple(sorted_list[i]))
return result