Spaces:
Runtime error
Runtime error
File size: 5,051 Bytes
75a8e67 123f4c7 75a8e67 123f4c7 b7358fc 123f4c7 75a8e67 072d5f2 75a8e67 123f4c7 75a8e67 29f1553 75a8e67 5dc9d4c 75a8e67 123f4c7 75a8e67 29f1553 123f4c7 29f1553 75a8e67 123f4c7 f00fb62 123f4c7 4c9d398 b7358fc 4c9d398 123f4c7 2f574e1 dd0a0ad 123f4c7 dd0a0ad 637fa88 123f4c7 2f574e1 23e0de9 123f4c7 3baceaa 2f574e1 123f4c7 23e0de9 123f4c7 2f574e1 75a8e67 4c9d398 123f4c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import os
import gradio as gr
from http import HTTPStatus
from typing import Generator, List, Optional, Tuple, Dict
import re
from urllib.error import HTTPError
from flask import Flask, request, jsonify
from transformers import AutoTokenizer, AutoModelForCausalLM
import threading
import requests
import torch
# Load the model and tokenizer
model_name = "dicta-il/dictalm2.0-instruct"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Set the pad token to eos_token if not already set
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
History = List[Tuple[str, str]]
Messages = List[Dict[str, str]]
def clear_session() -> History:
return []
def history_to_messages(history: History) -> Messages:
messages = []
for h in history:
messages.append({'role': 'user', 'content': h[0].strip()})
messages.append({'role': 'assistant', 'content': h[1].strip()})
return messages
def messages_to_history(messages: Messages) -> History:
history = []
for q, r in zip(messages[0::2], messages[1::2]):
history.append((q['content'], r['content']))
return history
# Flask app setup
app = Flask(__name__)
@app.route('/predict', methods=['POST'])
def predict():
data = request.json
input_text = data.get('text', '')
# Format the input text with instruction tokens
formatted_text = f"<s>[INST] {input_text} [/INST]"
# Tokenize the input
inputs = tokenizer(formatted_text, return_tensors='pt', padding=True, truncation=True, max_length=1024)
# Generate the output
outputs = model.generate(
inputs['input_ids'],
attention_mask=inputs['attention_mask'],
max_length=1024,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Decode the output
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).replace(formatted_text, '').strip()
return jsonify({"prediction": prediction})
def run_flask():
app.run(host='0.0.0.0', port=5000)
def is_hebrew(text: str) -> bool:
return bool(re.search(r'[\u0590-\u05FF]', text))
# Run Flask in a separate thread
threading.Thread(target=run_flask).start()
def model_chat(query: Optional[str], history: Optional[History]) -> Generator[Tuple[str, History], None, None]:
if query is None:
query = ''
if history is None:
history = []
if not query.strip():
return
response = requests.post("http://127.0.0.1:5000/predict", json={"text": query.strip()})
if response.status_code == 200:
prediction = response.json().get("prediction", "")
history.append((query, prediction))
yield history
else:
yield history
with gr.Blocks(css='''
.gr-group {direction: rtl;}
.chatbot{text-align:right;}
.dicta-header {
background-color: var(--input-background-fill); /* Replace with desired background color */
border-radius: 10px;
padding: 20px;
text-align: center;
display: flex;
flex-direction: row;
align-items: center;
box-shadow: var(--block-shadow);
border-color: var(--block-border-color);
border-width: 1px;
}
@media (max-width: 768px) {
.dicta-header {
flex-direction: column; /* Change to vertical for mobile devices */
}
}
.chatbot.prose {
font-size: 1.2em;
}
.dicta-logo {
width: 150px; /* Replace with actual logo width as desired */
height: auto;
margin-bottom: 20px;
}
.dicta-intro-text {
margin-bottom: 20px;
text-align: center;
display: flex;
flex-direction: column;
align-items: center;
width: 100%;
font-size: 1.1em;
}
textarea {
font-size: 1.2em;
}
''', js=None) as demo:
gr.Markdown("""
<div class="dicta-header">
<a href="">
<img src="file/logo_am.png" alt="Dicta Logo" class="dicta-logo">
</a>
<div class="dicta-intro-text">
<h1>讛讚讙诪讛 专讗砖讜谞讬转</h1>
<span dir='rtl'>讘专讜讻讬诐 讛讘讗讬诐 诇讚诪讜 讛讗讬谞讟专讗拽讟讬讘讬 讛专讗砖讜谉. 讞拽专讜 讗转 讬讻讜诇讜转 讛诪讜讚诇 讜专讗讜 讻讬爪讚 讛讜讗 讬讻讜诇 诇住讬讬注 诇讻诐 讘诪砖讬诪讜转讬讻诐</span><br/>
<span dir='rtl'>讛讚诪讜 谞讻转讘 注诇 讬讚讬 专讜注讬 专转诐 转讜讱 砖讬诪讜砖 讘诪讜讚诇 砖驻讛 讚讬拽讟讛 砖驻讜转讞 注诇 讬讚讬 诪驻讗"转</span><br/>
</div>
</div>
""")
interface = gr.ChatInterface(model_chat, fill_height=False)
interface.chatbot.rtl = True
interface.textbox.placeholder = "讛讻谞住 砖讗诇讛 讘注讘专讬转 (讗讜 讘讗谞讙诇讬转!)"
interface.textbox.rtl = True
interface.textbox.text_align = 'right'
interface.theme_css += '.gr-group {direction: rtl !important;}'
demo.queue(api_open=False).launch(max_threads=20, share=False, allowed_paths=['logo_am.png'])
|