Spaces:
Runtime error
Runtime error
import gradio as gr | |
import requests | |
from typing import List, Dict, Tuple | |
from flask import Flask, request, jsonify, send_from_directory | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import threading | |
import torch | |
import os | |
import re | |
# Define the API URL to use the internal server | |
API_URL = "http://localhost:5000/chat" | |
History = List[Tuple[str, str]] | |
Messages = List[Dict[str, str]] | |
app = Flask(__name__) | |
# Load the model and tokenizer | |
model_name = "dicta-il/dictalm2.0-instruct" | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Set the pad_token to eos_token if not already set | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
# Route to serve static files (e.g., images) | |
def send_static(path): | |
return send_from_directory('static', path) | |
def chat(): | |
data = request.json | |
messages = data.get('messages', []) | |
if not messages: | |
return jsonify({"response": "No messages provided"}), 400 | |
# Concatenate all user inputs into a single string | |
user_input = " ".join([msg['content'] for msg in messages if msg['role'] == 'user']) | |
inputs = tokenizer(user_input, return_tensors='pt', padding=True, truncation=True) | |
input_ids = inputs['input_ids'] | |
attention_mask = inputs['attention_mask'] | |
outputs = model.generate(input_ids, attention_mask=attention_mask, max_new_tokens=1000, pad_token_id=tokenizer.eos_token_id) | |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True).replace(user_input, '').strip() | |
return jsonify({"response": response_text}) | |
# Function to run the Flask app | |
def run_flask(): | |
app.run(host='0.0.0.0', port=5000) | |
# Start the Flask app in a separate thread | |
threading.Thread(target=run_flask).start() | |
# Gradio interface functions | |
def clear_session() -> History: | |
return [] | |
def history_to_messages(history: History) -> Messages: | |
messages = [] | |
for h in history: | |
messages.append({'role': 'user', 'content': h[0].strip()}) | |
messages.append({'role': 'assistant', 'content': h[1].strip()}) | |
return messages | |
def messages_to_history(messages: Messages) -> History: | |
history = [] | |
for q, r in zip(messages[0::2], messages[1::2]): | |
history.append((q['content'], r['content'])) | |
return history | |
def is_hebrew(text: str) -> bool: | |
return bool(re.search(r'[\u0590-\u05FF]', text)) | |
def model_chat(query: str, history: History) -> Tuple[str, History]: | |
if not query.strip(): | |
return '', history | |
messages = history_to_messages(history) | |
messages.append({'role': 'user', 'content': query.strip()}) | |
try: | |
response = requests.post(API_URL, json={"messages": messages}) | |
response.raise_for_status() # This will raise an HTTPError if the HTTP request returned an unsuccessful status code | |
response_json = response.json() | |
response_text = response_json.get("response", "Error: Response format is incorrect") | |
except requests.exceptions.HTTPError as e: | |
response_text = f"HTTPError: {str(e)}" | |
print(f"HTTPError: {e.response.text}") # Detailed error message | |
except requests.exceptions.RequestException as e: | |
response_text = f"RequestException: {str(e)}" | |
print(f"RequestException: {e}") # Debug print statement | |
except ValueError as e: | |
response_text = "ValueError: Invalid JSON response" | |
print(f"ValueError: {e}") # Debug print statement | |
except Exception as e: | |
response_text = f"Exception: {str(e)}" | |
print(f"General Exception: {e}") # Debug print statement | |
history.append((query.strip(), response_text.strip())) | |
return response_text.strip(), history | |
# Gradio interface setup | |
with gr.Blocks(css=''' | |
.gr-group {direction: rtl;} | |
.chatbot{text-align:right;} | |
.dicta-header { | |
background-color: var(--input-background-fill); | |
border-radius: 10px; | |
padding: 20px; | |
text-align: center; | |
display: flex; | |
flex-direction: row; | |
align-items: center; | |
box-shadow: var(--block-shadow); | |
border-color: var(--block-border-color); | |
border-width: 1px; | |
} | |
@media (max-width: 768px) { | |
.dicta-header { | |
flex-direction: column; | |
} | |
} | |
.chatbot.prose { | |
font-size: 1.2em; | |
} | |
.dicta-logo { | |
width: 150px; | |
height: auto; | |
margin-bottom: 20px; | |
} | |
.dicta-intro-text { | |
margin-bottom: 20px; | |
text-align: center; | |
display: flex; | |
flex-direction: column; | |
align-items: center; | |
width: 100%; | |
font-size: 1.1em; | |
} | |
textarea { | |
font-size: 1.2em; | |
} | |
''', js=None) as demo: | |
gr.Markdown(""" | |
<div class="dicta-header"> | |
<a href="/static/logo111.png"> | |
<img src="/static/logo111.png" alt="Logo" class="dicta-logo"> | |
</a> | |
<div class="dicta-intro-text"> | |
<h1>爪'讗讟 诪注专讻讬 - 讛讚讙诪讛 专讗砖讜谞讬转</h1> | |
<span dir='rtl'>讘专讜讻讬诐 讛讘讗讬诐 诇讚诪讜 讛讗讬谞讟专讗拽讟讬讘讬 讛专讗砖讜谉. 讞拽专讜 讗转 讬讻讜诇讜转 讛诪讜讚诇 讜专讗讜 讻讬爪讚 讛讜讗 讬讻讜诇 诇住讬讬注 诇讻诐 讘诪砖讬诪讜转讬讻诐</span><br/> | |
<span dir='rtl'>讛讚诪讜 谞讻转讘 注诇 讬讚讬 住专谉 专讜注讬 专转诐 转讜讱 砖讬诪讜砖 讘诪讜讚诇 砖驻讛 讚讬拽讟讛 砖驻讜转讞 注诇 讬讚讬 诪驻讗"转</span><br/> | |
</div> | |
</div> | |
""") | |
chatbot = gr.Chatbot(height=600) | |
query = gr.Textbox(placeholder="讛讻谞住 砖讗诇讛 讘注讘专讬转 (讗讜 讘讗谞讙诇讬转!)", rtl=True) | |
clear_btn = gr.Button("谞拽讛 砖讬讞讛") | |
def respond(query, history): | |
print(f"Query: {query}") # Debug print statement | |
response, history = model_chat(query, history) | |
print(f"Response: {response}") # Debug print statement | |
if is_hebrew(response): | |
return history, gr.update(value="", interactive=True, lines=2, rtl=True), history | |
else: | |
return history, gr.update(value="", interactive=True, lines=2, rtl=False), history | |
demo_state = gr.State([]) | |
query.submit(respond, [query, demo_state], [chatbot, query, demo_state]) | |
clear_btn.click(clear_session, [], [chatbot, demo_state]) | |
demo.launch(share=True) | |