Royrotem100 commited on
Commit
b228d02
โ€ข
1 Parent(s): 2b47d91

Initial commit

Browse files
Files changed (2) hide show
  1. app.py +112 -0
  2. app_api.py +60 -0
app.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ from typing import List, Dict, Tuple
5
+
6
+ # Define the API URL (adjust according to your server address)
7
+ API_URL = "http://127.0.0.1:5000/chat"
8
+
9
+ History = List[Tuple[str, str]]
10
+ Messages = List[Dict[str, str]]
11
+
12
+ def clear_session() -> History:
13
+ return []
14
+
15
+ def history_to_messages(history: History) -> Messages:
16
+ messages = []
17
+ for h in history:
18
+ messages.append({'role': 'user', 'content': h[0].strip()})
19
+ messages.append({'role': 'assistant', 'content': h[1].strip()})
20
+ return messages
21
+
22
+ def messages_to_history(messages: Messages) -> History:
23
+ history = []
24
+ for q, r in zip(messages[0::2], messages[1::2]):
25
+ history.append((q['content'], r['content']))
26
+ return history
27
+
28
+ def model_chat(query: str, history: History) -> Tuple[str, History]:
29
+ if not query.strip():
30
+ return '', history
31
+
32
+ messages = history_to_messages(history)
33
+ messages.append({'role': 'user', 'content': query.strip()})
34
+
35
+ response = requests.post(API_URL, json={"messages": messages})
36
+ if response.status_code != 200:
37
+ return "Error: Failed to get response from the API", history
38
+
39
+ response_json = response.json()
40
+ response_text = response_json["response"]
41
+
42
+ history.append((query.strip(), response_text.strip()))
43
+ return response_text.strip(), history
44
+
45
+ with gr.Blocks(css='''
46
+ .gr-group {direction: rtl;}
47
+ .chatbot{text-align:right;}
48
+ .dicta-header {
49
+ background-color: var(--input-background-fill);
50
+ border-radius: 10px;
51
+ padding: 20px;
52
+ text-align: center;
53
+ display: flex;
54
+ flex-direction: row;
55
+ align-items: center;
56
+ box-shadow: var(--block-shadow);
57
+ border-color: var(--block-border-color);
58
+ border-width: 1px;
59
+ }
60
+ @media (max-width: 768px) {
61
+ .dicta-header {
62
+ flex-direction: column;
63
+ }
64
+ }
65
+ .chatbot.prose {
66
+ font-size: 1.2em;
67
+ }
68
+ .dicta-logo {
69
+ width: 150px;
70
+ height: auto;
71
+ margin-bottom: 20px;
72
+ }
73
+ .dicta-intro-text {
74
+ margin-bottom: 20px;
75
+ text-align: center;
76
+ display: flex;
77
+ flex-direction: column;
78
+ align-items: center;
79
+ width: 100%;
80
+ font-size: 1.1em;
81
+ }
82
+ textarea {
83
+ font-size: 1.2em;
84
+ }
85
+ ''', js=None) as demo:
86
+ gr.Markdown("""
87
+ <div class="dicta-header">
88
+ <a href="">
89
+ <img src="\\logo111.png" alt="Logo" class="dicta-logo">
90
+ </a>
91
+ <div class="dicta-intro-text">
92
+ <h1>ืฆ'ืื˜ ืžืขืจื›ื™ - ื”ื“ื’ืžื” ืจืืฉื•ื ื™ืช</h1>
93
+ <span dir='rtl'>ื‘ืจื•ื›ื™ื ื”ื‘ืื™ื ืœื“ืžื• ื”ืื™ื ื˜ืจืืงื˜ื™ื‘ื™ ื”ืจืืฉื•ืŸ. ื—ืงืจื• ืืช ื™ื›ื•ืœื•ืช ื”ืžื•ื“ืœ ื•ืจืื• ื›ื™ืฆื“ ื”ื•ื ื™ื›ื•ืœ ืœืกื™ื™ืข ืœื›ืŸ ื‘ืžืฉื™ืžื•ืชื™ื›ื</span><br/>
94
+ <span dir='rtl'>ื”ื“ืžื• ื ื›ืชื‘ ืขืœ ื™ื“ื™ ืกืจืŸ ืจื•ืขื™ ืจืชื ืชื•ืš ืฉื™ืžื•ืฉ ื‘ืžื•ื“ืœ ืฉืคื” ื“ื™ืงื˜ื” ืฉืคื•ืชื— ืขืœ ื™ื“ื™ ืžืคื"ืช</span><br/>
95
+ </div>
96
+ </div>
97
+ """)
98
+
99
+ chatbot = gr.Chatbot(height=600)
100
+ query = gr.Textbox(placeholder="ื”ื›ื ืก ืฉืืœื” ื‘ืขื‘ืจื™ืช (ืื• ื‘ืื ื’ืœื™ืช!)", rtl=True)
101
+ clear_btn = gr.Button("ื ืงื” ืฉื™ื—ื”")
102
+
103
+ def respond(query, history):
104
+ response, history = model_chat(query, history)
105
+ return history, gr.update(value="", interactive=True)
106
+
107
+ demo_state = gr.State([])
108
+
109
+ query.submit(respond, [query, demo_state], [chatbot, query, demo_state])
110
+ clear_btn.click(clear_session, [], demo_state, chatbot)
111
+
112
+ demo.launch(share=True)
app_api.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
+
5
+ app = Flask(__name__)
6
+
7
+ # Load the model and tokenizer
8
+ model_name = "dicta-il/dictalm2.0-instruct"
9
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
10
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
11
+
12
+ # Ensure the tokenizer has a pad token, if not, add one.
13
+ if tokenizer.pad_token is None:
14
+ tokenizer.add_special_tokens({'pad_token': '[PAD]'})
15
+ model.resize_token_embeddings(len(tokenizer))
16
+
17
+ # Set the device to load the model onto
18
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
19
+ model.to(device)
20
+
21
+ @app.route('/chat', methods=['POST'])
22
+ def chat():
23
+ data = request.json
24
+ messages = data.get("messages", [])
25
+
26
+ if not messages:
27
+ return jsonify({"error": "No messages provided"}), 400
28
+
29
+ # Combine messages into a single input string with the correct template
30
+ conversation = "<s>"
31
+ for i, message in enumerate(messages):
32
+ role = message["role"]
33
+ content = message["content"]
34
+ if role == "user":
35
+ if i == 0:
36
+ conversation += f"[INST] {content} [/INST]"
37
+ else:
38
+ conversation += f" [INST] {content} [/INST]"
39
+ elif role == "assistant":
40
+ conversation += f" {content}"
41
+ conversation += "</s>"
42
+
43
+ # Tokenize the combined conversation
44
+ encoded = tokenizer(conversation, return_tensors="pt").to(device)
45
+
46
+ # Generate response using the model
47
+ generated_ids = model.generate(
48
+ input_ids=encoded['input_ids'],
49
+ attention_mask=encoded['attention_mask'],
50
+ max_new_tokens=50,
51
+ pad_token_id=tokenizer.pad_token_id,
52
+ do_sample=True
53
+ )
54
+
55
+ decoded = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
56
+
57
+ return jsonify({"response": decoded})
58
+
59
+ if __name__ == '__main__':
60
+ app.run(host='0.0.0.0', port=5000)