ooooo / app.py
Rozeeeee's picture
Update app.py
f573f99 verified
import streamlit as st
import pandas as pd
import requests
from bs4 import BeautifulSoup
from google.oauth2.service_account import Credentials
import gspread
import plotly.express as px
import json # 用於解析 JSON 文件
# Streamlit UI 標題
st.title("Booking.com 多項目數據抓取和視覺化展示")
# 合併的 URL 列表
urls = [
"https://www.booking.com/hotel/it/appartamento-via-genova-roma.zh-tw.html",
"https://www.booking.com/hotel/it/giulia-39-s-coliseum.zh-tw.html",
"https://www.booking.com/hotel/it/le-stelle-dell-esquilino.zh-tw.html",
"https://www.booking.com/hotel/it/retro-flat-termini.zh-tw.html",
"https://www.booking.com/hotel/it/domus-fanti.zh-tw.html",
"https://www.booking.com/hotel/it/radiant-retreat-in-esquilino.zh-tw.html",
"https://www.booking.com/hotel/it/over-the-roof-top-roma.zh-tw.html",
"https://www.booking.com/hotel/it/rome-sweet-home-roma1234.zh-tw.html",
"https://www.booking.com/hotel/it/visione-guest-house-via-delle-fratte-36.zh-tw.html",
"https://www.booking.com/hotel/it/appartamento-roma-centro-roma5.zh-tw.html",
"https://www.booking.com/hotel/us/loews-royal-pacific-resort-at-universal.zh-tw.html",
"https://www.booking.com/hotel/us/buena-vista-suites.zh-tw.html",
"https://www.booking.com/hotel/us/ramada-international-drive.zh-tw.html",
"https://www.booking.com/hotel/us/lake-buena-vista-14651-chelonia-parkway.zh-tw.html",
"https://www.booking.com/hotel/it/trevi-apartment-roma1.zh-tw.html",
"https://www.booking.com/hotel/it/white-flat-colosseo.zh-tw.html",
"https://www.booking.com/hotel/it/via-cavour-238.zh-tw.html",
"https://www.booking.com/hotel/it/modern-apartment-near-the-vatican-roma.zh-tw.html",
"https://www.booking.com/hotel/it/apt-prati-lt-vatican-and-center.zh-tw.html",
"https://www.booking.com/hotel/it/lion-99.zh-tw.html",
"https://www.booking.com/hotel/it/sweet-dream-cavour-roma1.zh-tw.html",
"https://www.booking.com/hotel/it/cavour-1.zh-tw.html",
"https://www.booking.com/hotel/it/eufonia-vinyl-apartment.zh-tw.html",
"https://www.booking.com/hotel/it/panisperna-apartment.zh-tw.html",
"https://www.booking.com/hotel/it/navona-panoramic-penthouse.zh-tw.html"
]
# 設定 User-Agent
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36"
}
# 定義抓取數據函數
def fetch_booking_data(url, headers):
try:
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.content, "html.parser")
title = soup.find("h2", class_="d2fee87262 pp-header__title").text.strip()
rating = soup.find("div", class_="bcdcb105b3 f45d8e4c32 df64fda51b").text.strip()
return {"標題": title, "評分": rating}
except Exception as e:
st.error(f"Error fetching data from {url}: {e}")
return None
# 抓取數據並顯示
st.header("抓取數據")
data = []
for url in urls:
result = fetch_booking_data(url, headers)
if result:
data.append(result)
# 將數據轉換為 DataFrame 並顯示
if data:
df = pd.DataFrame(data)
st.write("抓取到的數據:", df)
else:
st.warning("無法從任何 URL 抓取數據。")
# 定義上傳到 Google Sheets 的函數
def upload_to_google_sheet(df, spreadsheet_url, creds_file_content):
try:
# 將金鑰內容轉換為字典
creds_dict = json.loads(creds_file_content)
# 創建憑據
scope = ['https://www.googleapis.com/auth/spreadsheets']
creds = Credentials.from_service_account_info(creds_dict, scopes=scope)
# 授權並打開 Google Sheets
gs = gspread.authorize(creds)
sheet = gs.open_by_url(spreadsheet_url)
worksheet = sheet.get_worksheet(0)
# 清除並更新數據
worksheet.clear()
worksheet.update([df.columns.values.tolist()] + df.values.tolist())
st.success("數據已成功上傳到 Google Sheets!")
except Exception as e:
st.error(f"數據上傳失敗:{e}")
# 上傳到 Google Sheets
st.header("上傳到 Google Sheets")
spreadsheet_url = st.text_input("Google Sheets URL", "https://docs.google.com/spreadsheets/d/1iOzoii9bVAmqlcqnseoqjZBkBuaFcpbIvUxZeRJ2kmk/edit?gid=0#gid=0")
creds_file = st.file_uploader("上傳 Google API 金鑰檔案", type=["json"])
if st.button("上傳數據至 Google Sheets") and data:
if creds_file is not None:
creds_content = creds_file.read() # 讀取上傳的文件內容
upload_to_google_sheet(df, spreadsheet_url, creds_content)
else:
st.error("請上傳 Google API 金鑰檔案")
# 數據視覺化
st.header("數據視覺化")
if data:
# 提取數字評分
df['數字評分'] = df['評分'].str.extract(r'評分:(\d+\.\d+)').astype(float)
# 使用 Plotly 繪製條形圖
fig = px.bar(df, x='標題', y='數字評分', title="Booking.com 評分比較",
labels={'標題': '酒店標題', '數字評分': '評分'},
text='數字評分')
fig.update_layout(xaxis_title="酒店標題", yaxis_title="評分", xaxis_tickangle=-45)
st.plotly_chart(fig)
else:
st.warning("無可用數據繪製圖表")