Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,31 +3,17 @@ import requests
|
|
3 |
from bs4 import BeautifulSoup
|
4 |
import pandas as pd
|
5 |
import plotly.graph_objects as go
|
6 |
-
import
|
7 |
|
8 |
app = Flask(__name__)
|
9 |
|
10 |
-
|
11 |
-
def
|
12 |
-
# 設定應用標題
|
13 |
-
title = "餐廳資料抓取與分析"
|
14 |
-
|
15 |
-
# 從 Google 試算表中讀取 URLs
|
16 |
-
sheet_id = "1W20lawjiQtEpljUKoEaMVPDlSdnhvJLPUy2jk5xao_w"
|
17 |
-
urls_df = pd.read_csv(f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv")
|
18 |
-
|
19 |
-
# 將 URLs 轉換為列表
|
20 |
-
urls = urls_df['網址'].tolist()
|
21 |
-
|
22 |
-
# 初始化一個空的 DataFrame 列表來儲存所有資料
|
23 |
df_list = []
|
24 |
-
|
25 |
-
# 迭代每個網址並抓取資料
|
26 |
for url in urls:
|
27 |
response = requests.get(url)
|
28 |
soup = BeautifulSoup(response.content, 'html.parser')
|
29 |
|
30 |
-
# 解析並抓取所需資料
|
31 |
title_tag = soup.find('h1', class_='restaurant-details__heading--title')
|
32 |
title = title_tag.text.strip() if title_tag else 'N/A'
|
33 |
|
@@ -40,11 +26,9 @@ def home():
|
|
40 |
description_tag = soup.find('div', class_='restaurant-details__description--text')
|
41 |
description = description_tag.text.strip() if description_tag else 'N/A'
|
42 |
|
43 |
-
# NOTE: Assuming latitude and longitude are not available from the current page content, you can omit them or fetch them if necessary
|
44 |
lat = 'N/A'
|
45 |
lon = 'N/A'
|
46 |
|
47 |
-
# 將抓取的資料新增到列表中
|
48 |
df_list.append({
|
49 |
'Title': title,
|
50 |
'Address': address,
|
@@ -54,25 +38,33 @@ def home():
|
|
54 |
'Longitude': lon
|
55 |
})
|
56 |
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
#
|
64 |
-
|
|
|
65 |
fig_bar = go.Figure(data=[go.Bar(x=area_counts.index, y=area_counts.values)])
|
66 |
fig_bar.update_layout(title='每個區的商家數量', xaxis_title='區域', yaxis_title='商家數量')
|
67 |
-
bar_chart =
|
68 |
|
69 |
-
#
|
70 |
fig_pie = go.Figure(data=[go.Pie(labels=area_counts.index, values=area_counts.values)])
|
71 |
fig_pie.update_layout(title='每個區的商家數量比例')
|
72 |
-
pie_chart =
|
73 |
|
74 |
-
# 渲染模板,顯示結果
|
75 |
return render_template('results.html', tables=[df.to_html(classes='data')], bar_chart=bar_chart, pie_chart=pie_chart)
|
76 |
|
77 |
if __name__ == '__main__':
|
78 |
-
app.run(host='0.0.0.0', port=8080, debug=True)
|
|
|
3 |
from bs4 import BeautifulSoup
|
4 |
import pandas as pd
|
5 |
import plotly.graph_objects as go
|
6 |
+
import os
|
7 |
|
8 |
app = Flask(__name__)
|
9 |
|
10 |
+
# Function to scrape restaurant data from URLs
|
11 |
+
def scrape_data(urls):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
df_list = []
|
|
|
|
|
13 |
for url in urls:
|
14 |
response = requests.get(url)
|
15 |
soup = BeautifulSoup(response.content, 'html.parser')
|
16 |
|
|
|
17 |
title_tag = soup.find('h1', class_='restaurant-details__heading--title')
|
18 |
title = title_tag.text.strip() if title_tag else 'N/A'
|
19 |
|
|
|
26 |
description_tag = soup.find('div', class_='restaurant-details__description--text')
|
27 |
description = description_tag.text.strip() if description_tag else 'N/A'
|
28 |
|
|
|
29 |
lat = 'N/A'
|
30 |
lon = 'N/A'
|
31 |
|
|
|
32 |
df_list.append({
|
33 |
'Title': title,
|
34 |
'Address': address,
|
|
|
38 |
'Longitude': lon
|
39 |
})
|
40 |
|
41 |
+
return pd.DataFrame(df_list)
|
42 |
+
|
43 |
+
@app.route('/')
|
44 |
+
def home():
|
45 |
+
return render_template('index.html')
|
46 |
|
47 |
+
@app.route('/scrape', methods=['POST'])
|
48 |
+
def scrape():
|
49 |
+
sheet_id = request.form['sheet_id']
|
50 |
+
urls_df = pd.read_csv(f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv")
|
51 |
+
urls = urls_df['網址'].tolist()
|
52 |
+
|
53 |
+
df = scrape_data(urls)
|
54 |
|
55 |
+
# Generate bar chart
|
56 |
+
df['Area'] = df['Address'].str.extract(r'(\w+區)')
|
57 |
+
area_counts = df['Area'].value_counts()
|
58 |
fig_bar = go.Figure(data=[go.Bar(x=area_counts.index, y=area_counts.values)])
|
59 |
fig_bar.update_layout(title='每個區的商家數量', xaxis_title='區域', yaxis_title='商家數量')
|
60 |
+
bar_chart = fig_bar.to_html(full_html=False)
|
61 |
|
62 |
+
# Generate pie chart
|
63 |
fig_pie = go.Figure(data=[go.Pie(labels=area_counts.index, values=area_counts.values)])
|
64 |
fig_pie.update_layout(title='每個區的商家數量比例')
|
65 |
+
pie_chart = fig_pie.to_html(full_html=False)
|
66 |
|
|
|
67 |
return render_template('results.html', tables=[df.to_html(classes='data')], bar_chart=bar_chart, pie_chart=pie_chart)
|
68 |
|
69 |
if __name__ == '__main__':
|
70 |
+
app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 8080)), debug=True)
|