Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
import pandas as pd
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
# 設定應用標題
|
8 |
+
st.title("餐廳資料抓取與分析")
|
9 |
+
|
10 |
+
# 從 Google 試算表中讀取 URLs
|
11 |
+
sheet_id = "1W20lawjiQtEpljUKoEaMVPDlSdnhvJLPUy2jk5xao_w"
|
12 |
+
urls_df = pd.read_csv(f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv")
|
13 |
+
|
14 |
+
# 將 URLs 轉換為列表
|
15 |
+
urls = urls_df['網址'].tolist()
|
16 |
+
|
17 |
+
# 初始化一個空的 DataFrame 列表來儲存所有資料
|
18 |
+
df_list = []
|
19 |
+
|
20 |
+
# 迭代每個網址並抓取資料
|
21 |
+
for url in urls:
|
22 |
+
response = requests.get(url)
|
23 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
24 |
+
|
25 |
+
# 解析並抓取所需資料
|
26 |
+
title = soup.find('h1', class_='restaurant-details__heading--title').text.strip()
|
27 |
+
address = soup.find('li', class_='restaurant-details__heading--address').text.strip()
|
28 |
+
|
29 |
+
# 手機號碼處理
|
30 |
+
phone_tag = soup.find('a', {'data-event': 'CTA_tel'})
|
31 |
+
phone = phone_tag['href'].replace('tel:', '') if phone_tag else 'N/A'
|
32 |
+
|
33 |
+
description = soup.find('div', class_='restaurant-details__description--text').text.strip()
|
34 |
+
|
35 |
+
# 將抓取的資料新增到列表中
|
36 |
+
df_list.append({'Title': title, 'Address': address, 'Phone': phone, 'Description': description})
|
37 |
+
|
38 |
+
# 使用 pd.DataFrame() 將所有資料合併成一個 DataFrame
|
39 |
+
df = pd.DataFrame(df_list)
|
40 |
+
|
41 |
+
# 顯示抓取的資料
|
42 |
+
st.subheader("抓取的餐廳資料")
|
43 |
+
st.dataframe(df)
|
44 |
+
|
45 |
+
# 統計每個區的商家數量
|
46 |
+
df['Area'] = df['Address'].str.extract(r'(\w+區)') # 提取區域
|
47 |
+
area_counts = df['Area'].value_counts() # 統計各區的商家數量
|
48 |
+
|
49 |
+
# 繪製柱狀圖
|
50 |
+
fig_bar = go.Figure(data=[go.Bar(x=area_counts.index, y=area_counts.values)])
|
51 |
+
fig_bar.update_layout(title='每個區的商家數量', xaxis_title='區域', yaxis_title='商家數量')
|
52 |
+
|
53 |
+
# 顯示柱狀圖
|
54 |
+
st.plotly_chart(fig_bar)
|
55 |
+
|
56 |
+
# 繪製圓餅圖
|
57 |
+
fig_pie = go.Figure(data=[go.Pie(labels=area_counts.index, values=area_counts.values)])
|
58 |
+
fig_pie.update_layout(title='每個區的商家數量比例')
|
59 |
+
|
60 |
+
# 顯示圓餅圖
|
61 |
+
st.plotly_chart(fig_pie)
|