Spaces:
Sleeping
Sleeping
File size: 2,400 Bytes
97e4faf bd104fa 97e4faf 9990581 b38366a 97e4faf d743ee9 97e4faf ea84da0 bd104fa 97e4faf ea84da0 d743ee9 ea84da0 d743ee9 ea84da0 d743ee9 ea84da0 d743ee9 ea84da0 97e4faf d743ee9 97e4faf deb14ad e9c4729 bd104fa 97e4faf d743ee9 ea84da0 d743ee9 1d9f047 97e4faf d743ee9 97e4faf bd104fa 944b0be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
import os
import torch
import gradio as gr
import torchaudio
import time
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_voice, load_voices
VOICE_OPTIONS = [
"angie",
"deniro",
"freeman",
"sanjita",
"random",
]
def inference(
text,
voice,
Emotion,
Preset,
):
texts = [text]
Angry_tone = "[I am so angry]"
Sad_tone = "[I am so sad]"
Happy_tone = "[I am so happy]"
Scared_tone = "[I am so scared]"
if Emotion == "Angry":
text = Angry_tone + text
if Emotion == "Sad":
text = Sad_tone + text
if Emotion == "Happy":
text = Happy_tone + text
if Emotion == "Scared":
text = Scared_tone + text
voices = [voice]
if len(voices) == 1:
voice_samples, conditioning_latents = load_voice(voice)
else:
voice_samples, conditioning_latents = load_voices(voices)
start_time = time.time()
for j, text in enumerate(texts):
for audio_frame in tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset= Preset,
k=1
):
yield (24000, audio_frame.cpu().detach().numpy())
def main():
title = "Tortoise TTS "
text = gr.Textbox(
lines=4,
label="Text:",
)
voice = gr.Dropdown(
VOICE_OPTIONS, value="jane_eyre", label="Select voice:", type="value"
)
Emotion = gr.Radio(
["Angry", "Sad", "Happy", "Scared"],
type="value",
)
Preset = gr.Radio(
["ultra_fast", "fast", "standard", "high_quality"],
type="value",
value="ultra_fast",
)
output_audio = gr.Audio(label="streaming audio:", streaming=True, autoplay=True)
interface = gr.Interface(
fn=inference,
inputs=[
text,
voice,
Emotion,
Preset,
],
title=title,
outputs=[output_audio],
)
interface.queue().launch()
if __name__ == "__main__":
tts = TextToSpeech(kv_cache=True, use_deepspeed=True, half=True)
with open("Tortoise_TTS_Runs_Scripts.log", "a") as f:
f.write(
f"\n\n-------------------------Tortoise TTS Scripts Logs, {datetime.now()}-------------------------\n"
)
main()
|