File size: 2,548 Bytes
97e4faf
 
 
 
 
 
 
bd104fa
97e4faf
 
 
 
 
b38366a
97e4faf
 
 
 
 
ea84da0
1d9f047
97e4faf
ea84da0
bd104fa
97e4faf
ea84da0
 
 
 
 
 
 
 
 
 
 
 
 
 
97e4faf
 
 
 
 
 
 
 
 
 
 
 
 
 
1d9f047
97e4faf
 
 
 
 
deb14ad
e9c4729
bd104fa
 
 
97e4faf
 
 
 
 
 
ea84da0
 
 
 
 
1d9f047
 
 
 
 
 
 
97e4faf
 
 
 
 
 
ea84da0
1d9f047
97e4faf
 
 
 
bd104fa
944b0be
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import torch
import gradio as gr
import torchaudio
import time
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_voice, load_voices

VOICE_OPTIONS = [
    "angie",
    "deniro",
    "freeman",
    "random", 
]

def inference(
    text,
    voice,
    emotion_option,
    preset_option,
):
    
    texts = [text]

    Angry_tone = "[I am so angry]"
    Sad_tone = "[I am so sad]"
    Happy_tone = "[I am so happy]"
    Scared_tone = "[I am so scared]"

    if emotion_option == "Angry":
        text = Angry_tone + text
    if emotion_option == "Sad":
        text = Sad_tone + text
    if emotion_option == "Happy":
        text = Happy_tone + text
    if emotion_option == "Scared":
        text = Scared_tone + text

    voices = [voice]

    if len(voices) == 1:
        voice_samples, conditioning_latents = load_voice(voice)
    else:
        voice_samples, conditioning_latents = load_voices(voices)

    start_time = time.time()

    for j, text in enumerate(texts):
        for audio_frame in tts.tts_with_preset(
            text,
            voice_samples=voice_samples,
            conditioning_latents=conditioning_latents,
            preset= preset_option,
            k=1
        ):
            yield (24000, audio_frame.cpu().detach().numpy())

def main():
    title = "Tortoise TTS "
    
    text = gr.Textbox(
        lines=4,
        label="Text:",
    )

    voice = gr.Dropdown(
        VOICE_OPTIONS, value="jane_eyre", label="Select voice:", type="value"
    )

    emotion_option = gr.Radio(
        ["Angry", "Sad", "Happy", "Scared"],
        type="value",
    )

    preset_option = gr.Radio(
        ["ultra_fast", "fast", "standard", "high_quality"],
        label="ultra_fast for quick inference and high_quality for better inference",
        type="value",
        value="ultra_fast",
    )

    output_audio = gr.Audio(label="streaming audio:", streaming=True, autoplay=True)
    interface = gr.Interface(
        fn=inference,
        inputs=[
            text,
            voice,
            emotion_option,
            preset_option,
        ],
        title=title,
        outputs=[output_audio],
    )
    interface.queue().launch()

if __name__ == "__main__":
    tts = TextToSpeech(kv_cache=True, use_deepspeed=True, half=True)

    with open("Tortoise_TTS_Runs_Scripts.log", "a") as f:
        f.write(
            f"\n\n-------------------------Tortoise TTS Scripts Logs, {datetime.now()}-------------------------\n"
        )

    main()