Did some refactoring in BE API
Browse files- backend/app/main.py +3 -10
- backend/app/problem_generator.py +16 -0
- backend/app/vectorstore.py +50 -32
- backend/tests/{test_quiz.py → test_api.py} +2 -1
- backend/tests/test_vectorstore.py +16 -7
backend/app/main.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from pydantic import BaseModel
|
4 |
-
import
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
@@ -27,12 +27,5 @@ async def crawl_documentation(input_data: UrlInput):
|
|
27 |
|
28 |
@app.post("/problems/")
|
29 |
async def generate_problems(query: UserQuery):
|
30 |
-
|
31 |
-
|
32 |
-
"What is the main purpose of this framework?",
|
33 |
-
"How do you install this tool?",
|
34 |
-
"What are the key components?",
|
35 |
-
"Explain the basic workflow",
|
36 |
-
"What are the best practices?"
|
37 |
-
]
|
38 |
-
return {"Problems": sample_questions}
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from pydantic import BaseModel
|
4 |
+
from backend.app.problem_generator import ProblemGenerator
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
|
|
27 |
|
28 |
@app.post("/problems/")
|
29 |
async def generate_problems(query: UserQuery):
|
30 |
+
problems = ProblemGenerator().generate_problems(query.user_query)
|
31 |
+
return {"Problems": problems}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
backend/app/problem_generator.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
class ProblemGenerator:
|
4 |
+
def generate_problems(self, query: str) -> List[str]:
|
5 |
+
"""
|
6 |
+
Generate problems based on the user's query.
|
7 |
+
"""
|
8 |
+
# For MVP, returning random sample questions
|
9 |
+
sample_questions = [
|
10 |
+
"What is the main purpose of this framework?",
|
11 |
+
"How do you install this tool?",
|
12 |
+
"What are the key components?",
|
13 |
+
"Explain the basic workflow",
|
14 |
+
"What are the best practices?"
|
15 |
+
]
|
16 |
+
return sample_questions
|
backend/app/vectorstore.py
CHANGED
@@ -1,44 +1,62 @@
|
|
1 |
"""
|
2 |
Super early version of a vector store. Just want to make something available for the rest of the app to use.
|
|
|
|
|
3 |
"""
|
4 |
import os
|
5 |
import requests
|
6 |
import nltk
|
7 |
-
|
8 |
from langchain_community.vectorstores import Qdrant
|
9 |
from langchain_openai.embeddings import OpenAIEmbeddings
|
|
|
|
|
10 |
|
11 |
nltk.download('punkt_tab')
|
12 |
nltk.download('averaged_perceptron_tagger_eng')
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""
|
2 |
Super early version of a vector store. Just want to make something available for the rest of the app to use.
|
3 |
+
|
4 |
+
Vector store implementation with singleton pattern to ensure only one instance exists.
|
5 |
"""
|
6 |
import os
|
7 |
import requests
|
8 |
import nltk
|
9 |
+
from typing import Optional
|
10 |
from langchain_community.vectorstores import Qdrant
|
11 |
from langchain_openai.embeddings import OpenAIEmbeddings
|
12 |
+
from langchain_community.document_loaders import DirectoryLoader
|
13 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
|
15 |
nltk.download('punkt_tab')
|
16 |
nltk.download('averaged_perceptron_tagger_eng')
|
17 |
|
18 |
+
# Global variable to store the singleton instance
|
19 |
+
_vector_db_instance: Optional[Qdrant] = None
|
20 |
+
|
21 |
+
def get_vector_db() -> Qdrant:
|
22 |
+
"""
|
23 |
+
Factory function that returns a singleton instance of the vector database.
|
24 |
+
Creates the instance if it doesn't exist.
|
25 |
+
"""
|
26 |
+
global _vector_db_instance
|
27 |
+
|
28 |
+
if _vector_db_instance is None:
|
29 |
+
# Create static/data directory if it doesn't exist
|
30 |
+
os.makedirs("static/data", exist_ok=True)
|
31 |
+
|
32 |
+
# Download and save the webpage if it doesn't exist
|
33 |
+
html_path = "static/data/langchain_rag_tutorial.html"
|
34 |
+
if not os.path.exists(html_path):
|
35 |
+
url = "https://python.langchain.com/docs/tutorials/rag/"
|
36 |
+
response = requests.get(url)
|
37 |
+
with open(html_path, "w", encoding="utf-8") as f:
|
38 |
+
f.write(response.text)
|
39 |
+
|
40 |
+
# Initialize embedding model
|
41 |
+
embedding_model = OpenAIEmbeddings(model="text-embedding-3-small")
|
42 |
+
|
43 |
+
# Load HTML files from static/data directory
|
44 |
+
loader = DirectoryLoader("static/data", glob="*.html")
|
45 |
+
documents = loader.load()
|
46 |
+
|
47 |
+
# Split documents into chunks
|
48 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
49 |
+
chunk_size=1000,
|
50 |
+
chunk_overlap=200
|
51 |
+
)
|
52 |
+
split_chunks = text_splitter.split_documents(documents)
|
53 |
+
|
54 |
+
# Create vector store instance
|
55 |
+
_vector_db_instance = Qdrant.from_documents(
|
56 |
+
split_chunks,
|
57 |
+
embedding_model,
|
58 |
+
location=":memory:",
|
59 |
+
collection_name="extending_context_window_llama_3",
|
60 |
+
)
|
61 |
+
|
62 |
+
return _vector_db_instance
|
backend/tests/{test_quiz.py → test_api.py}
RENAMED
@@ -18,4 +18,5 @@ def test_problems_endpoint():
|
|
18 |
)
|
19 |
assert response.status_code == 200
|
20 |
assert "Problems" in response.json()
|
21 |
-
assert len(response.json()["Problems"]) == 5
|
|
|
|
18 |
)
|
19 |
assert response.status_code == 200
|
20 |
assert "Problems" in response.json()
|
21 |
+
assert len(response.json()["Problems"]) == 5
|
22 |
+
|
backend/tests/test_vectorstore.py
CHANGED
@@ -1,15 +1,14 @@
|
|
1 |
-
import pytest
|
2 |
import os
|
3 |
from langchain.schema import Document
|
4 |
-
from backend.app import
|
5 |
|
6 |
def test_directory_creation():
|
7 |
-
|
8 |
assert os.path.exists("static/data")
|
9 |
assert os.path.exists("static/data/langchain_rag_tutorial.html")
|
10 |
|
|
|
11 |
def test_html_content():
|
12 |
-
"""Test that the HTML content was downloaded and contains expected content"""
|
13 |
with open("static/data/langchain_rag_tutorial.html", "r", encoding="utf-8") as f:
|
14 |
content = f.read()
|
15 |
|
@@ -22,8 +21,9 @@ def test_vector_store_similarity_search():
|
|
22 |
# Test query
|
23 |
query = "What is RAG?"
|
24 |
|
25 |
-
#
|
26 |
-
|
|
|
27 |
|
28 |
# Verify we get results
|
29 |
assert len(results) == 2
|
@@ -32,4 +32,13 @@ def test_vector_store_similarity_search():
|
|
32 |
# Verify the results contain relevant content
|
33 |
combined_content = " ".join([doc.page_content for doc in results]).lower()
|
34 |
assert "rag" in combined_content
|
35 |
-
assert "retrieval" in combined_content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
from langchain.schema import Document
|
3 |
+
from backend.app.vectorstore import get_vector_db
|
4 |
|
5 |
def test_directory_creation():
|
6 |
+
get_vector_db()
|
7 |
assert os.path.exists("static/data")
|
8 |
assert os.path.exists("static/data/langchain_rag_tutorial.html")
|
9 |
|
10 |
+
# TODO remove this test when data ingrestion layer is implemented
|
11 |
def test_html_content():
|
|
|
12 |
with open("static/data/langchain_rag_tutorial.html", "r", encoding="utf-8") as f:
|
13 |
content = f.read()
|
14 |
|
|
|
21 |
# Test query
|
22 |
query = "What is RAG?"
|
23 |
|
24 |
+
# Get vector db instance and perform similarity search
|
25 |
+
vector_db = get_vector_db()
|
26 |
+
results = vector_db.similarity_search(query, k=2)
|
27 |
|
28 |
# Verify we get results
|
29 |
assert len(results) == 2
|
|
|
32 |
# Verify the results contain relevant content
|
33 |
combined_content = " ".join([doc.page_content for doc in results]).lower()
|
34 |
assert "rag" in combined_content
|
35 |
+
assert "retrieval" in combined_content
|
36 |
+
|
37 |
+
def test_vector_db_singleton():
|
38 |
+
"""Test that get_vector_db returns the same instance each time"""
|
39 |
+
# Get two instances
|
40 |
+
instance1 = get_vector_db()
|
41 |
+
instance2 = get_vector_db()
|
42 |
+
|
43 |
+
# Verify they are the same object
|
44 |
+
assert instance1 is instance2
|