Added finetuning nd
Browse files- finetune_embedding_model.ipynb +505 -0
- pyproject.toml +4 -0
finetune_embedding_model.ipynb
ADDED
@@ -0,0 +1,505 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import nest_asyncio\n",
|
10 |
+
"\n",
|
11 |
+
"nest_asyncio.apply()"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 2,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"import os\n",
|
21 |
+
"import getpass\n",
|
22 |
+
"\n",
|
23 |
+
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"Enter Your OpenAI API Key: \")"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": null,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"name": "stdout",
|
33 |
+
"output_type": "stream",
|
34 |
+
"text": [
|
35 |
+
"mkdir: static/training_data: File exists\n",
|
36 |
+
" % Total % Received % Xferd Average Speed Time Time Time Current\n",
|
37 |
+
" Dload Upload Total Spent Left Speed\n",
|
38 |
+
"100 340k 100 340k 0 0 2270k 0 --:--:-- --:--:-- --:--:-- 2285k\n"
|
39 |
+
]
|
40 |
+
}
|
41 |
+
],
|
42 |
+
"source": [
|
43 |
+
"!mkdir static/\n",
|
44 |
+
"!mkdir static/training_data\n",
|
45 |
+
"!curl https://python.langchain.com/docs/tutorials/rag/ -o static/training_data/langchain_rag_tutorial.html"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": 4,
|
51 |
+
"metadata": {},
|
52 |
+
"outputs": [
|
53 |
+
{
|
54 |
+
"data": {
|
55 |
+
"text/plain": [
|
56 |
+
"1"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
"execution_count": 4,
|
60 |
+
"metadata": {},
|
61 |
+
"output_type": "execute_result"
|
62 |
+
}
|
63 |
+
],
|
64 |
+
"source": [
|
65 |
+
"from langchain_community.document_loaders import DirectoryLoader\n",
|
66 |
+
"from langchain_community.document_loaders import BSHTMLLoader\n",
|
67 |
+
"\n",
|
68 |
+
"path = \"static/training_data/\"\n",
|
69 |
+
"text_loader = DirectoryLoader(path, glob=\"*.html\", loader_cls=BSHTMLLoader)\n",
|
70 |
+
"docs = text_loader.load()\n",
|
71 |
+
"len(docs)"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"cell_type": "code",
|
76 |
+
"execution_count": 5,
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [
|
79 |
+
{
|
80 |
+
"data": {
|
81 |
+
"text/plain": [
|
82 |
+
"81"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
"execution_count": 5,
|
86 |
+
"metadata": {},
|
87 |
+
"output_type": "execute_result"
|
88 |
+
}
|
89 |
+
],
|
90 |
+
"source": [
|
91 |
+
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
|
92 |
+
"\n",
|
93 |
+
"text_splitter = RecursiveCharacterTextSplitter(\n",
|
94 |
+
" chunk_size = 750,\n",
|
95 |
+
" chunk_overlap = 20,\n",
|
96 |
+
" length_function = len\n",
|
97 |
+
")\n",
|
98 |
+
"training_documents = text_splitter.split_documents(text_loader.load())\n",
|
99 |
+
"len(training_documents)"
|
100 |
+
]
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"cell_type": "code",
|
104 |
+
"execution_count": 6,
|
105 |
+
"metadata": {},
|
106 |
+
"outputs": [],
|
107 |
+
"source": [
|
108 |
+
"import uuid\n",
|
109 |
+
"\n",
|
110 |
+
"id_set = set()\n",
|
111 |
+
"\n",
|
112 |
+
"for document in training_documents:\n",
|
113 |
+
" id = str(uuid.uuid4())\n",
|
114 |
+
" while id in id_set:\n",
|
115 |
+
" id = uuid.uuid4()\n",
|
116 |
+
" id_set.add(id)\n",
|
117 |
+
" document.metadata[\"id\"] = id"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"cell_type": "code",
|
122 |
+
"execution_count": 7,
|
123 |
+
"metadata": {},
|
124 |
+
"outputs": [],
|
125 |
+
"source": [
|
126 |
+
"# break up training documents into training, validation, and test sets\n",
|
127 |
+
"import random\n",
|
128 |
+
"\n",
|
129 |
+
"# set seed for reproducibility\n",
|
130 |
+
"random.seed(42)\n",
|
131 |
+
"\n",
|
132 |
+
"random.shuffle(training_documents)\n",
|
133 |
+
"\n",
|
134 |
+
"training_split_documents = training_documents[:int(0.8 * len(training_documents))]\n",
|
135 |
+
"val_split_documents = training_documents[int(0.8 * len(training_documents)):int(0.9 * len(training_documents))]\n",
|
136 |
+
"test_split_documents = training_documents[int(0.9 * len(training_documents)):]"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"cell_type": "code",
|
141 |
+
"execution_count": null,
|
142 |
+
"metadata": {},
|
143 |
+
"outputs": [],
|
144 |
+
"source": []
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"cell_type": "code",
|
148 |
+
"execution_count": null,
|
149 |
+
"metadata": {},
|
150 |
+
"outputs": [],
|
151 |
+
"source": []
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "code",
|
155 |
+
"execution_count": 8,
|
156 |
+
"metadata": {},
|
157 |
+
"outputs": [],
|
158 |
+
"source": [
|
159 |
+
"from langchain_openai import ChatOpenAI\n",
|
160 |
+
"\n",
|
161 |
+
"qa_chat_model = ChatOpenAI(\n",
|
162 |
+
" model=\"gpt-4o-mini\",\n",
|
163 |
+
" temperature=0\n",
|
164 |
+
")\n",
|
165 |
+
"\n",
|
166 |
+
"from langchain_core.prompts import ChatPromptTemplate\n",
|
167 |
+
"\n",
|
168 |
+
"qa_prompt = \"\"\"\\\n",
|
169 |
+
"Given the following context, you must generate questions based on only the provided context.\n",
|
170 |
+
"\n",
|
171 |
+
"You are to generate {n_questions} questions which should be provided in the following format:\n",
|
172 |
+
"\n",
|
173 |
+
"1. QUESTION #1\n",
|
174 |
+
"2. QUESTION #2\n",
|
175 |
+
"...\n",
|
176 |
+
"\n",
|
177 |
+
"Context:\n",
|
178 |
+
"{context}\n",
|
179 |
+
"\"\"\"\n",
|
180 |
+
"\n",
|
181 |
+
"qa_prompt_template = ChatPromptTemplate.from_template(qa_prompt)\n",
|
182 |
+
"question_generation_chain = qa_prompt_template | qa_chat_model"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"cell_type": "code",
|
187 |
+
"execution_count": 9,
|
188 |
+
"metadata": {},
|
189 |
+
"outputs": [],
|
190 |
+
"source": [
|
191 |
+
"import tqdm\n",
|
192 |
+
"\n",
|
193 |
+
"async def create_questions(documents, n_questions):\n",
|
194 |
+
" questions = {}\n",
|
195 |
+
" contexts = {}\n",
|
196 |
+
" for document in documents:\n",
|
197 |
+
" question = await question_generation_chain.ainvoke({\"context\": document.page_content, \"n_questions\": n_questions})\n",
|
198 |
+
" questions[document.metadata[\"id\"]] = question\n",
|
199 |
+
" contexts[document.metadata[\"id\"]] = [document.metadata[\"id\"]]\n",
|
200 |
+
" return questions, contexts"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "code",
|
205 |
+
"execution_count": 10,
|
206 |
+
"metadata": {},
|
207 |
+
"outputs": [],
|
208 |
+
"source": [
|
209 |
+
"training_questions, training_relevant_contexts = await create_questions(training_split_documents, 2)\n",
|
210 |
+
"val_questions, val_relevant_contexts = await create_questions(val_split_documents, 2)\n",
|
211 |
+
"test_questions, test_relevant_contexts = await create_questions(test_split_documents, 2)"
|
212 |
+
]
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"cell_type": "code",
|
216 |
+
"execution_count": 11,
|
217 |
+
"metadata": {},
|
218 |
+
"outputs": [],
|
219 |
+
"source": [
|
220 |
+
"import json\n",
|
221 |
+
"\n",
|
222 |
+
"training_corpus = {train_item.metadata[\"id\"] : train_item.page_content for train_item in training_split_documents}\n",
|
223 |
+
"\n",
|
224 |
+
"# Convert AIMessage objects to their string content\n",
|
225 |
+
"training_questions_serializable = {k: v.content for k, v in training_questions.items()}\n",
|
226 |
+
"\n",
|
227 |
+
"train_dataset = {\n",
|
228 |
+
" \"questions\": training_questions_serializable,\n",
|
229 |
+
" \"relevant_contexts\": training_relevant_contexts,\n",
|
230 |
+
" \"corpus\": training_corpus\n",
|
231 |
+
"}\n",
|
232 |
+
"\n",
|
233 |
+
"with open(\"static/training_data/training_dataset.jsonl\", \"w\") as f:\n",
|
234 |
+
" json.dump(train_dataset, f)\n",
|
235 |
+
"\n",
|
236 |
+
"val_corpus = {val_item.metadata[\"id\"] : val_item.page_content for val_item in val_split_documents}\n",
|
237 |
+
"\n",
|
238 |
+
"# Convert AIMessage objects to their string content\n",
|
239 |
+
"val_questions_serializable = {k: v.content for k, v in val_questions.items()}\n",
|
240 |
+
"\n",
|
241 |
+
"val_dataset = {\n",
|
242 |
+
" \"questions\": val_questions_serializable,\n",
|
243 |
+
" \"relevant_contexts\": val_relevant_contexts,\n",
|
244 |
+
" \"corpus\": val_corpus\n",
|
245 |
+
"}\n",
|
246 |
+
"\n",
|
247 |
+
"with open(\"static/training_data/val_dataset.jsonl\", \"w\") as f:\n",
|
248 |
+
" json.dump(val_dataset, f)\n",
|
249 |
+
"\n",
|
250 |
+
"test_corpus = {test_item.metadata[\"id\"] : test_item.page_content for test_item in test_split_documents}\n",
|
251 |
+
"\n",
|
252 |
+
"# Convert AIMessage objects to their string content\n",
|
253 |
+
"test_questions_serializable = {k: v.content for k, v in test_questions.items()}\n",
|
254 |
+
"\n",
|
255 |
+
"test_dataset = {\n",
|
256 |
+
" \"questions\": test_questions_serializable,\n",
|
257 |
+
" \"relevant_contexts\": test_relevant_contexts,\n",
|
258 |
+
" \"corpus\": test_corpus\n",
|
259 |
+
"}\n",
|
260 |
+
"\n",
|
261 |
+
"with open(\"static/training_data/test_dataset.jsonl\", \"w\") as f:\n",
|
262 |
+
" json.dump(test_dataset, f)"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "code",
|
267 |
+
"execution_count": null,
|
268 |
+
"metadata": {},
|
269 |
+
"outputs": [],
|
270 |
+
"source": []
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "code",
|
274 |
+
"execution_count": 12,
|
275 |
+
"metadata": {},
|
276 |
+
"outputs": [
|
277 |
+
{
|
278 |
+
"name": "stderr",
|
279 |
+
"output_type": "stream",
|
280 |
+
"text": [
|
281 |
+
"/Users/ryanrodriguez/src/Simplify/.venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
282 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
283 |
+
]
|
284 |
+
}
|
285 |
+
],
|
286 |
+
"source": [
|
287 |
+
"from sentence_transformers import SentenceTransformer\n",
|
288 |
+
"\n",
|
289 |
+
"model_id = \"Snowflake/snowflake-arctic-embed-l\"\n",
|
290 |
+
"model = SentenceTransformer(model_id)"
|
291 |
+
]
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"cell_type": "code",
|
295 |
+
"execution_count": 13,
|
296 |
+
"metadata": {},
|
297 |
+
"outputs": [],
|
298 |
+
"source": [
|
299 |
+
"from torch.utils.data import DataLoader\n",
|
300 |
+
"from torch.utils.data import Dataset\n",
|
301 |
+
"from sentence_transformers import InputExample\n",
|
302 |
+
"\n",
|
303 |
+
"corpus = train_dataset['corpus']\n",
|
304 |
+
"queries = train_dataset['questions']\n",
|
305 |
+
"relevant_docs = train_dataset['relevant_contexts']\n",
|
306 |
+
"\n",
|
307 |
+
"examples = []\n",
|
308 |
+
"for query_id, query in queries.items():\n",
|
309 |
+
" doc_id = relevant_docs[query_id][0]\n",
|
310 |
+
" text = corpus[doc_id]\n",
|
311 |
+
" example = InputExample(texts=[query, text])\n",
|
312 |
+
" examples.append(example)\n",
|
313 |
+
"\n",
|
314 |
+
"BATCH_SIZE = 16\n",
|
315 |
+
"\n",
|
316 |
+
"loader = DataLoader(\n",
|
317 |
+
" examples,\n",
|
318 |
+
" batch_size=BATCH_SIZE,\n",
|
319 |
+
")\n",
|
320 |
+
"\n",
|
321 |
+
"from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss\n",
|
322 |
+
"\n",
|
323 |
+
"matryoshka_dimensions = [768, 512, 256, 128, 64]\n",
|
324 |
+
"inner_train_loss = MultipleNegativesRankingLoss(model)\n",
|
325 |
+
"train_loss = MatryoshkaLoss(\n",
|
326 |
+
" model, inner_train_loss, matryoshka_dims=matryoshka_dimensions\n",
|
327 |
+
")"
|
328 |
+
]
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"cell_type": "code",
|
332 |
+
"execution_count": 14,
|
333 |
+
"metadata": {},
|
334 |
+
"outputs": [],
|
335 |
+
"source": [
|
336 |
+
"from sentence_transformers.evaluation import InformationRetrievalEvaluator\n",
|
337 |
+
"\n",
|
338 |
+
"corpus = val_dataset['corpus']\n",
|
339 |
+
"queries = val_dataset['questions']\n",
|
340 |
+
"relevant_docs = val_dataset['relevant_contexts']\n",
|
341 |
+
"\n",
|
342 |
+
"evaluator = InformationRetrievalEvaluator(queries, corpus, relevant_docs)"
|
343 |
+
]
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"cell_type": "code",
|
347 |
+
"execution_count": 15,
|
348 |
+
"metadata": {},
|
349 |
+
"outputs": [],
|
350 |
+
"source": [
|
351 |
+
"EPOCHS = 10"
|
352 |
+
]
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"cell_type": "code",
|
356 |
+
"execution_count": 16,
|
357 |
+
"metadata": {},
|
358 |
+
"outputs": [
|
359 |
+
{
|
360 |
+
"data": {
|
361 |
+
"text/html": [
|
362 |
+
"<button onClick=\"this.nextSibling.style.display='block';this.style.display='none';\">Display W&B run</button><iframe src='https://wandb.ai/dummy/dummy/runs/rhtwiupv?jupyter=true' style='border:none;width:100%;height:420px;display:none;'></iframe>"
|
363 |
+
],
|
364 |
+
"text/plain": [
|
365 |
+
"<wandb.sdk.wandb_run.Run at 0x3315ad010>"
|
366 |
+
]
|
367 |
+
},
|
368 |
+
"execution_count": 16,
|
369 |
+
"metadata": {},
|
370 |
+
"output_type": "execute_result"
|
371 |
+
}
|
372 |
+
],
|
373 |
+
"source": [
|
374 |
+
"import wandb\n",
|
375 |
+
"wandb.init(mode=\"disabled\")"
|
376 |
+
]
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"cell_type": "code",
|
380 |
+
"execution_count": 17,
|
381 |
+
"metadata": {},
|
382 |
+
"outputs": [
|
383 |
+
{
|
384 |
+
"name": "stderr",
|
385 |
+
"output_type": "stream",
|
386 |
+
"text": [
|
387 |
+
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m The `run_name` is currently set to the same value as `TrainingArguments.output_dir`. If this was not intended, please specify a different run name by setting the `TrainingArguments.run_name` parameter.\n"
|
388 |
+
]
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"data": {
|
392 |
+
"text/html": [
|
393 |
+
"\n",
|
394 |
+
" <div>\n",
|
395 |
+
" \n",
|
396 |
+
" <progress value='2' max='40' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
397 |
+
" [ 2/40 : < :, Epoch 0.25/10]\n",
|
398 |
+
" </div>\n",
|
399 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
400 |
+
" <thead>\n",
|
401 |
+
" <tr style=\"text-align: left;\">\n",
|
402 |
+
" <th>Step</th>\n",
|
403 |
+
" <th>Training Loss</th>\n",
|
404 |
+
" <th>Validation Loss</th>\n",
|
405 |
+
" </tr>\n",
|
406 |
+
" </thead>\n",
|
407 |
+
" <tbody>\n",
|
408 |
+
" </tbody>\n",
|
409 |
+
"</table><p>"
|
410 |
+
],
|
411 |
+
"text/plain": [
|
412 |
+
"<IPython.core.display.HTML object>"
|
413 |
+
]
|
414 |
+
},
|
415 |
+
"metadata": {},
|
416 |
+
"output_type": "display_data"
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"ename": "KeyboardInterrupt",
|
420 |
+
"evalue": "",
|
421 |
+
"output_type": "error",
|
422 |
+
"traceback": [
|
423 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
424 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
425 |
+
"Cell \u001b[0;32mIn[17], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m warmup_steps \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mint\u001b[39m(\u001b[38;5;28mlen\u001b[39m(loader) \u001b[38;5;241m*\u001b[39m EPOCHS \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m0.1\u001b[39m)\n\u001b[0;32m----> 3\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrain_objectives\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43m(\u001b[49m\u001b[43mloader\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrain_loss\u001b[49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 5\u001b[0m \u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mEPOCHS\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 6\u001b[0m \u001b[43m \u001b[49m\u001b[43mwarmup_steps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mwarmup_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 7\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_path\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mfinetuned_arctic_ft\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mshow_progress_bar\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 9\u001b[0m \u001b[43m \u001b[49m\u001b[43mevaluator\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mevaluator\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 10\u001b[0m \u001b[43m \u001b[49m\u001b[43mevaluation_steps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m50\u001b[39;49m\n\u001b[1;32m 11\u001b[0m \u001b[43m)\u001b[49m\n",
|
426 |
+
"File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/sentence_transformers/fit_mixin.py:385\u001b[0m, in \u001b[0;36mFitMixin.fit\u001b[0;34m(self, train_objectives, evaluator, epochs, steps_per_epoch, scheduler, warmup_steps, optimizer_class, optimizer_params, weight_decay, evaluation_steps, output_path, save_best_model, max_grad_norm, use_amp, callback, show_progress_bar, checkpoint_path, checkpoint_save_steps, checkpoint_save_total_limit)\u001b[0m\n\u001b[1;32m 382\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m output_path \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 383\u001b[0m trainer\u001b[38;5;241m.\u001b[39madd_callback(SaveModelCallback(output_path, evaluator, save_best_model))\n\u001b[0;32m--> 385\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
|
427 |
+
"File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/transformers/trainer.py:2241\u001b[0m, in \u001b[0;36mTrainer.train\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m 2239\u001b[0m hf_hub_utils\u001b[38;5;241m.\u001b[39menable_progress_bars()\n\u001b[1;32m 2240\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2241\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43minner_training_loop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2242\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2243\u001b[0m \u001b[43m \u001b[49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2244\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrial\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrial\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2245\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2246\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
|
428 |
+
"File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/transformers/trainer.py:2599\u001b[0m, in \u001b[0;36mTrainer._inner_training_loop\u001b[0;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 2595\u001b[0m grad_norm \u001b[38;5;241m=\u001b[39m _grad_norm\n\u001b[1;32m 2597\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcallback_handler\u001b[38;5;241m.\u001b[39mon_pre_optimizer_step(args, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol)\n\u001b[0;32m-> 2599\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptimizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstep\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2601\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcallback_handler\u001b[38;5;241m.\u001b[39mon_optimizer_step(args, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol)\n\u001b[1;32m 2603\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maccelerator\u001b[38;5;241m.\u001b[39moptimizer_step_was_skipped:\n\u001b[1;32m 2604\u001b[0m \u001b[38;5;66;03m# Delay optimizer scheduling until metrics are generated\u001b[39;00m\n",
|
429 |
+
"File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/accelerate/optimizer.py:178\u001b[0m, in \u001b[0;36mAcceleratedOptimizer.step\u001b[0;34m(self, closure)\u001b[0m\n\u001b[1;32m 176\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_accelerate_step_called \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m 177\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 178\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptimizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstep\u001b[49m\u001b[43m(\u001b[49m\u001b[43mclosure\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 179\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maccelerator_state\u001b[38;5;241m.\u001b[39mdistributed_type \u001b[38;5;241m==\u001b[39m DistributedType\u001b[38;5;241m.\u001b[39mXLA:\n\u001b[1;32m 180\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgradient_state\u001b[38;5;241m.\u001b[39mis_xla_gradients_synced \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n",
|
430 |
+
"File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/torch/optim/lr_scheduler.py:140\u001b[0m, in \u001b[0;36mLRScheduler.__init__.<locals>.patch_track_step_called.<locals>.wrap_step.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 138\u001b[0m opt \u001b[38;5;241m=\u001b[39m opt_ref()\n\u001b[1;32m 139\u001b[0m opt\u001b[38;5;241m.\u001b[39m_opt_called \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m \u001b[38;5;66;03m# type: ignore[union-attr]\u001b[39;00m\n\u001b[0;32m--> 140\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__get__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mopt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mopt\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;18;43m__class__\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
431 |
+
"File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/torch/optim/optimizer.py:493\u001b[0m, in \u001b[0;36mOptimizer.profile_hook_step.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 488\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 489\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[1;32m 490\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfunc\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m must return None or a tuple of (new_args, new_kwargs), but got \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresult\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 491\u001b[0m )\n\u001b[0;32m--> 493\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 494\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_optimizer_step_code()\n\u001b[1;32m 496\u001b[0m \u001b[38;5;66;03m# call optimizer step post hooks\u001b[39;00m\n",
|
432 |
+
"File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/torch/optim/optimizer.py:91\u001b[0m, in \u001b[0;36m_use_grad_for_differentiable.<locals>._use_grad\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 89\u001b[0m torch\u001b[38;5;241m.\u001b[39mset_grad_enabled(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdefaults[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdifferentiable\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 90\u001b[0m torch\u001b[38;5;241m.\u001b[39m_dynamo\u001b[38;5;241m.\u001b[39mgraph_break()\n\u001b[0;32m---> 91\u001b[0m ret \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 92\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 93\u001b[0m torch\u001b[38;5;241m.\u001b[39m_dynamo\u001b[38;5;241m.\u001b[39mgraph_break()\n",
|
433 |
+
"File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/torch/optim/adamw.py:243\u001b[0m, in \u001b[0;36mAdamW.step\u001b[0;34m(self, closure)\u001b[0m\n\u001b[1;32m 230\u001b[0m beta1, beta2 \u001b[38;5;241m=\u001b[39m cast(Tuple[\u001b[38;5;28mfloat\u001b[39m, \u001b[38;5;28mfloat\u001b[39m], group[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbetas\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 232\u001b[0m has_complex \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_init_group(\n\u001b[1;32m 233\u001b[0m group,\n\u001b[1;32m 234\u001b[0m params_with_grad,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 240\u001b[0m state_steps,\n\u001b[1;32m 241\u001b[0m )\n\u001b[0;32m--> 243\u001b[0m \u001b[43madamw\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 244\u001b[0m \u001b[43m \u001b[49m\u001b[43mparams_with_grad\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 245\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrads\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 246\u001b[0m \u001b[43m \u001b[49m\u001b[43mexp_avgs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 247\u001b[0m \u001b[43m \u001b[49m\u001b[43mexp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 248\u001b[0m \u001b[43m \u001b[49m\u001b[43mmax_exp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 249\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 250\u001b[0m \u001b[43m \u001b[49m\u001b[43mamsgrad\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mamsgrad\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 251\u001b[0m \u001b[43m \u001b[49m\u001b[43mbeta1\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbeta1\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 252\u001b[0m \u001b[43m \u001b[49m\u001b[43mbeta2\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbeta2\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 253\u001b[0m \u001b[43m \u001b[49m\u001b[43mlr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlr\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 254\u001b[0m \u001b[43m \u001b[49m\u001b[43mweight_decay\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mweight_decay\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 255\u001b[0m \u001b[43m \u001b[49m\u001b[43meps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43meps\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 256\u001b[0m \u001b[43m \u001b[49m\u001b[43mmaximize\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmaximize\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 257\u001b[0m \u001b[43m \u001b[49m\u001b[43mforeach\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mforeach\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 258\u001b[0m \u001b[43m \u001b[49m\u001b[43mcapturable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcapturable\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 259\u001b[0m \u001b[43m \u001b[49m\u001b[43mdifferentiable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mdifferentiable\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 260\u001b[0m \u001b[43m \u001b[49m\u001b[43mfused\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfused\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 261\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrad_scale\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mgetattr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mgrad_scale\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 262\u001b[0m \u001b[43m \u001b[49m\u001b[43mfound_inf\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mgetattr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfound_inf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 263\u001b[0m \u001b[43m \u001b[49m\u001b[43mhas_complex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhas_complex\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 264\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 266\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m loss\n",
|
434 |
+
"File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/torch/optim/optimizer.py:154\u001b[0m, in \u001b[0;36m_disable_dynamo_if_unsupported.<locals>.wrapper.<locals>.maybe_fallback\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 152\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m disabled_func(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 153\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 154\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
435 |
+
"File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/torch/optim/adamw.py:875\u001b[0m, in \u001b[0;36madamw\u001b[0;34m(params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, foreach, capturable, differentiable, fused, grad_scale, found_inf, has_complex, amsgrad, beta1, beta2, lr, weight_decay, eps, maximize)\u001b[0m\n\u001b[1;32m 872\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 873\u001b[0m func \u001b[38;5;241m=\u001b[39m _single_tensor_adamw\n\u001b[0;32m--> 875\u001b[0m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 876\u001b[0m \u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 877\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrads\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 878\u001b[0m \u001b[43m \u001b[49m\u001b[43mexp_avgs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 879\u001b[0m \u001b[43m \u001b[49m\u001b[43mexp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 880\u001b[0m \u001b[43m \u001b[49m\u001b[43mmax_exp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 881\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 882\u001b[0m \u001b[43m \u001b[49m\u001b[43mamsgrad\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mamsgrad\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 883\u001b[0m \u001b[43m \u001b[49m\u001b[43mbeta1\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbeta1\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 884\u001b[0m \u001b[43m \u001b[49m\u001b[43mbeta2\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbeta2\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 885\u001b[0m \u001b[43m \u001b[49m\u001b[43mlr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlr\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 886\u001b[0m \u001b[43m \u001b[49m\u001b[43mweight_decay\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mweight_decay\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 887\u001b[0m \u001b[43m \u001b[49m\u001b[43meps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43meps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 888\u001b[0m \u001b[43m \u001b[49m\u001b[43mmaximize\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaximize\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 889\u001b[0m \u001b[43m \u001b[49m\u001b[43mcapturable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcapturable\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 890\u001b[0m \u001b[43m \u001b[49m\u001b[43mdifferentiable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdifferentiable\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 891\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrad_scale\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgrad_scale\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 892\u001b[0m \u001b[43m \u001b[49m\u001b[43mfound_inf\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfound_inf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 893\u001b[0m \u001b[43m \u001b[49m\u001b[43mhas_complex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhas_complex\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 894\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
436 |
+
"File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/torch/optim/adamw.py:405\u001b[0m, in \u001b[0;36m_single_tensor_adamw\u001b[0;34m(params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, grad_scale, found_inf, amsgrad, beta1, beta2, lr, weight_decay, eps, maximize, capturable, differentiable, has_complex)\u001b[0m\n\u001b[1;32m 402\u001b[0m step_t \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 404\u001b[0m \u001b[38;5;66;03m# Perform stepweight decay\u001b[39;00m\n\u001b[0;32m--> 405\u001b[0m \u001b[43mparam\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmul_\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mlr\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mweight_decay\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 407\u001b[0m device \u001b[38;5;241m=\u001b[39m param\u001b[38;5;241m.\u001b[39mdevice\n\u001b[1;32m 409\u001b[0m device \u001b[38;5;241m=\u001b[39m param\u001b[38;5;241m.\u001b[39mdevice\n",
|
437 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
438 |
+
]
|
439 |
+
}
|
440 |
+
],
|
441 |
+
"source": [
|
442 |
+
"warmup_steps = int(len(loader) * EPOCHS * 0.1)\n",
|
443 |
+
"\n",
|
444 |
+
"model.fit(\n",
|
445 |
+
" train_objectives=[(loader, train_loss)],\n",
|
446 |
+
" epochs=EPOCHS,\n",
|
447 |
+
" warmup_steps=warmup_steps,\n",
|
448 |
+
" output_path='finetuned_arctic_ft',\n",
|
449 |
+
" show_progress_bar=True,\n",
|
450 |
+
" evaluator=evaluator,\n",
|
451 |
+
" evaluation_steps=50\n",
|
452 |
+
")"
|
453 |
+
]
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"cell_type": "code",
|
457 |
+
"execution_count": null,
|
458 |
+
"metadata": {},
|
459 |
+
"outputs": [],
|
460 |
+
"source": [
|
461 |
+
"from huggingface_hub import notebook_login\n",
|
462 |
+
"\n",
|
463 |
+
"notebook_login()"
|
464 |
+
]
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"cell_type": "code",
|
468 |
+
"execution_count": null,
|
469 |
+
"metadata": {},
|
470 |
+
"outputs": [],
|
471 |
+
"source": [
|
472 |
+
"hf_username = \"Rsr2425\"\n",
|
473 |
+
"model.push_to_hub(f\"{hf_username}/simplify-embeddings\")"
|
474 |
+
]
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"cell_type": "code",
|
478 |
+
"execution_count": null,
|
479 |
+
"metadata": {},
|
480 |
+
"outputs": [],
|
481 |
+
"source": []
|
482 |
+
}
|
483 |
+
],
|
484 |
+
"metadata": {
|
485 |
+
"kernelspec": {
|
486 |
+
"display_name": ".venv",
|
487 |
+
"language": "python",
|
488 |
+
"name": "python3"
|
489 |
+
},
|
490 |
+
"language_info": {
|
491 |
+
"codemirror_mode": {
|
492 |
+
"name": "ipython",
|
493 |
+
"version": 3
|
494 |
+
},
|
495 |
+
"file_extension": ".py",
|
496 |
+
"mimetype": "text/x-python",
|
497 |
+
"name": "python",
|
498 |
+
"nbconvert_exporter": "python",
|
499 |
+
"pygments_lexer": "ipython3",
|
500 |
+
"version": "3.12.0"
|
501 |
+
}
|
502 |
+
},
|
503 |
+
"nbformat": 4,
|
504 |
+
"nbformat_minor": 2
|
505 |
+
}
|
pyproject.toml
CHANGED
@@ -24,6 +24,10 @@ dependencies = [
|
|
24 |
"unstructured",
|
25 |
"qdrant-client>=1.6.0",
|
26 |
"ipykernel",
|
|
|
|
|
|
|
|
|
27 |
]
|
28 |
|
29 |
[tool.setuptools]
|
|
|
24 |
"unstructured",
|
25 |
"qdrant-client>=1.6.0",
|
26 |
"ipykernel",
|
27 |
+
"sentence-transformers>=3.4.1",
|
28 |
+
"transformers[torch]>=4.48.3",
|
29 |
+
"wandb>=0.19.6",
|
30 |
+
"datasets>=3.2.0",
|
31 |
]
|
32 |
|
33 |
[tool.setuptools]
|