Rsr2425 commited on
Commit
4e88609
·
1 Parent(s): 291d559

Added finetuning nd

Browse files
Files changed (2) hide show
  1. finetune_embedding_model.ipynb +505 -0
  2. pyproject.toml +4 -0
finetune_embedding_model.ipynb ADDED
@@ -0,0 +1,505 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import nest_asyncio\n",
10
+ "\n",
11
+ "nest_asyncio.apply()"
12
+ ]
13
+ },
14
+ {
15
+ "cell_type": "code",
16
+ "execution_count": 2,
17
+ "metadata": {},
18
+ "outputs": [],
19
+ "source": [
20
+ "import os\n",
21
+ "import getpass\n",
22
+ "\n",
23
+ "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"Enter Your OpenAI API Key: \")"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": null,
29
+ "metadata": {},
30
+ "outputs": [
31
+ {
32
+ "name": "stdout",
33
+ "output_type": "stream",
34
+ "text": [
35
+ "mkdir: static/training_data: File exists\n",
36
+ " % Total % Received % Xferd Average Speed Time Time Time Current\n",
37
+ " Dload Upload Total Spent Left Speed\n",
38
+ "100 340k 100 340k 0 0 2270k 0 --:--:-- --:--:-- --:--:-- 2285k\n"
39
+ ]
40
+ }
41
+ ],
42
+ "source": [
43
+ "!mkdir static/\n",
44
+ "!mkdir static/training_data\n",
45
+ "!curl https://python.langchain.com/docs/tutorials/rag/ -o static/training_data/langchain_rag_tutorial.html"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "code",
50
+ "execution_count": 4,
51
+ "metadata": {},
52
+ "outputs": [
53
+ {
54
+ "data": {
55
+ "text/plain": [
56
+ "1"
57
+ ]
58
+ },
59
+ "execution_count": 4,
60
+ "metadata": {},
61
+ "output_type": "execute_result"
62
+ }
63
+ ],
64
+ "source": [
65
+ "from langchain_community.document_loaders import DirectoryLoader\n",
66
+ "from langchain_community.document_loaders import BSHTMLLoader\n",
67
+ "\n",
68
+ "path = \"static/training_data/\"\n",
69
+ "text_loader = DirectoryLoader(path, glob=\"*.html\", loader_cls=BSHTMLLoader)\n",
70
+ "docs = text_loader.load()\n",
71
+ "len(docs)"
72
+ ]
73
+ },
74
+ {
75
+ "cell_type": "code",
76
+ "execution_count": 5,
77
+ "metadata": {},
78
+ "outputs": [
79
+ {
80
+ "data": {
81
+ "text/plain": [
82
+ "81"
83
+ ]
84
+ },
85
+ "execution_count": 5,
86
+ "metadata": {},
87
+ "output_type": "execute_result"
88
+ }
89
+ ],
90
+ "source": [
91
+ "from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
92
+ "\n",
93
+ "text_splitter = RecursiveCharacterTextSplitter(\n",
94
+ " chunk_size = 750,\n",
95
+ " chunk_overlap = 20,\n",
96
+ " length_function = len\n",
97
+ ")\n",
98
+ "training_documents = text_splitter.split_documents(text_loader.load())\n",
99
+ "len(training_documents)"
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "code",
104
+ "execution_count": 6,
105
+ "metadata": {},
106
+ "outputs": [],
107
+ "source": [
108
+ "import uuid\n",
109
+ "\n",
110
+ "id_set = set()\n",
111
+ "\n",
112
+ "for document in training_documents:\n",
113
+ " id = str(uuid.uuid4())\n",
114
+ " while id in id_set:\n",
115
+ " id = uuid.uuid4()\n",
116
+ " id_set.add(id)\n",
117
+ " document.metadata[\"id\"] = id"
118
+ ]
119
+ },
120
+ {
121
+ "cell_type": "code",
122
+ "execution_count": 7,
123
+ "metadata": {},
124
+ "outputs": [],
125
+ "source": [
126
+ "# break up training documents into training, validation, and test sets\n",
127
+ "import random\n",
128
+ "\n",
129
+ "# set seed for reproducibility\n",
130
+ "random.seed(42)\n",
131
+ "\n",
132
+ "random.shuffle(training_documents)\n",
133
+ "\n",
134
+ "training_split_documents = training_documents[:int(0.8 * len(training_documents))]\n",
135
+ "val_split_documents = training_documents[int(0.8 * len(training_documents)):int(0.9 * len(training_documents))]\n",
136
+ "test_split_documents = training_documents[int(0.9 * len(training_documents)):]"
137
+ ]
138
+ },
139
+ {
140
+ "cell_type": "code",
141
+ "execution_count": null,
142
+ "metadata": {},
143
+ "outputs": [],
144
+ "source": []
145
+ },
146
+ {
147
+ "cell_type": "code",
148
+ "execution_count": null,
149
+ "metadata": {},
150
+ "outputs": [],
151
+ "source": []
152
+ },
153
+ {
154
+ "cell_type": "code",
155
+ "execution_count": 8,
156
+ "metadata": {},
157
+ "outputs": [],
158
+ "source": [
159
+ "from langchain_openai import ChatOpenAI\n",
160
+ "\n",
161
+ "qa_chat_model = ChatOpenAI(\n",
162
+ " model=\"gpt-4o-mini\",\n",
163
+ " temperature=0\n",
164
+ ")\n",
165
+ "\n",
166
+ "from langchain_core.prompts import ChatPromptTemplate\n",
167
+ "\n",
168
+ "qa_prompt = \"\"\"\\\n",
169
+ "Given the following context, you must generate questions based on only the provided context.\n",
170
+ "\n",
171
+ "You are to generate {n_questions} questions which should be provided in the following format:\n",
172
+ "\n",
173
+ "1. QUESTION #1\n",
174
+ "2. QUESTION #2\n",
175
+ "...\n",
176
+ "\n",
177
+ "Context:\n",
178
+ "{context}\n",
179
+ "\"\"\"\n",
180
+ "\n",
181
+ "qa_prompt_template = ChatPromptTemplate.from_template(qa_prompt)\n",
182
+ "question_generation_chain = qa_prompt_template | qa_chat_model"
183
+ ]
184
+ },
185
+ {
186
+ "cell_type": "code",
187
+ "execution_count": 9,
188
+ "metadata": {},
189
+ "outputs": [],
190
+ "source": [
191
+ "import tqdm\n",
192
+ "\n",
193
+ "async def create_questions(documents, n_questions):\n",
194
+ " questions = {}\n",
195
+ " contexts = {}\n",
196
+ " for document in documents:\n",
197
+ " question = await question_generation_chain.ainvoke({\"context\": document.page_content, \"n_questions\": n_questions})\n",
198
+ " questions[document.metadata[\"id\"]] = question\n",
199
+ " contexts[document.metadata[\"id\"]] = [document.metadata[\"id\"]]\n",
200
+ " return questions, contexts"
201
+ ]
202
+ },
203
+ {
204
+ "cell_type": "code",
205
+ "execution_count": 10,
206
+ "metadata": {},
207
+ "outputs": [],
208
+ "source": [
209
+ "training_questions, training_relevant_contexts = await create_questions(training_split_documents, 2)\n",
210
+ "val_questions, val_relevant_contexts = await create_questions(val_split_documents, 2)\n",
211
+ "test_questions, test_relevant_contexts = await create_questions(test_split_documents, 2)"
212
+ ]
213
+ },
214
+ {
215
+ "cell_type": "code",
216
+ "execution_count": 11,
217
+ "metadata": {},
218
+ "outputs": [],
219
+ "source": [
220
+ "import json\n",
221
+ "\n",
222
+ "training_corpus = {train_item.metadata[\"id\"] : train_item.page_content for train_item in training_split_documents}\n",
223
+ "\n",
224
+ "# Convert AIMessage objects to their string content\n",
225
+ "training_questions_serializable = {k: v.content for k, v in training_questions.items()}\n",
226
+ "\n",
227
+ "train_dataset = {\n",
228
+ " \"questions\": training_questions_serializable,\n",
229
+ " \"relevant_contexts\": training_relevant_contexts,\n",
230
+ " \"corpus\": training_corpus\n",
231
+ "}\n",
232
+ "\n",
233
+ "with open(\"static/training_data/training_dataset.jsonl\", \"w\") as f:\n",
234
+ " json.dump(train_dataset, f)\n",
235
+ "\n",
236
+ "val_corpus = {val_item.metadata[\"id\"] : val_item.page_content for val_item in val_split_documents}\n",
237
+ "\n",
238
+ "# Convert AIMessage objects to their string content\n",
239
+ "val_questions_serializable = {k: v.content for k, v in val_questions.items()}\n",
240
+ "\n",
241
+ "val_dataset = {\n",
242
+ " \"questions\": val_questions_serializable,\n",
243
+ " \"relevant_contexts\": val_relevant_contexts,\n",
244
+ " \"corpus\": val_corpus\n",
245
+ "}\n",
246
+ "\n",
247
+ "with open(\"static/training_data/val_dataset.jsonl\", \"w\") as f:\n",
248
+ " json.dump(val_dataset, f)\n",
249
+ "\n",
250
+ "test_corpus = {test_item.metadata[\"id\"] : test_item.page_content for test_item in test_split_documents}\n",
251
+ "\n",
252
+ "# Convert AIMessage objects to their string content\n",
253
+ "test_questions_serializable = {k: v.content for k, v in test_questions.items()}\n",
254
+ "\n",
255
+ "test_dataset = {\n",
256
+ " \"questions\": test_questions_serializable,\n",
257
+ " \"relevant_contexts\": test_relevant_contexts,\n",
258
+ " \"corpus\": test_corpus\n",
259
+ "}\n",
260
+ "\n",
261
+ "with open(\"static/training_data/test_dataset.jsonl\", \"w\") as f:\n",
262
+ " json.dump(test_dataset, f)"
263
+ ]
264
+ },
265
+ {
266
+ "cell_type": "code",
267
+ "execution_count": null,
268
+ "metadata": {},
269
+ "outputs": [],
270
+ "source": []
271
+ },
272
+ {
273
+ "cell_type": "code",
274
+ "execution_count": 12,
275
+ "metadata": {},
276
+ "outputs": [
277
+ {
278
+ "name": "stderr",
279
+ "output_type": "stream",
280
+ "text": [
281
+ "/Users/ryanrodriguez/src/Simplify/.venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
282
+ " from .autonotebook import tqdm as notebook_tqdm\n"
283
+ ]
284
+ }
285
+ ],
286
+ "source": [
287
+ "from sentence_transformers import SentenceTransformer\n",
288
+ "\n",
289
+ "model_id = \"Snowflake/snowflake-arctic-embed-l\"\n",
290
+ "model = SentenceTransformer(model_id)"
291
+ ]
292
+ },
293
+ {
294
+ "cell_type": "code",
295
+ "execution_count": 13,
296
+ "metadata": {},
297
+ "outputs": [],
298
+ "source": [
299
+ "from torch.utils.data import DataLoader\n",
300
+ "from torch.utils.data import Dataset\n",
301
+ "from sentence_transformers import InputExample\n",
302
+ "\n",
303
+ "corpus = train_dataset['corpus']\n",
304
+ "queries = train_dataset['questions']\n",
305
+ "relevant_docs = train_dataset['relevant_contexts']\n",
306
+ "\n",
307
+ "examples = []\n",
308
+ "for query_id, query in queries.items():\n",
309
+ " doc_id = relevant_docs[query_id][0]\n",
310
+ " text = corpus[doc_id]\n",
311
+ " example = InputExample(texts=[query, text])\n",
312
+ " examples.append(example)\n",
313
+ "\n",
314
+ "BATCH_SIZE = 16\n",
315
+ "\n",
316
+ "loader = DataLoader(\n",
317
+ " examples,\n",
318
+ " batch_size=BATCH_SIZE,\n",
319
+ ")\n",
320
+ "\n",
321
+ "from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss\n",
322
+ "\n",
323
+ "matryoshka_dimensions = [768, 512, 256, 128, 64]\n",
324
+ "inner_train_loss = MultipleNegativesRankingLoss(model)\n",
325
+ "train_loss = MatryoshkaLoss(\n",
326
+ " model, inner_train_loss, matryoshka_dims=matryoshka_dimensions\n",
327
+ ")"
328
+ ]
329
+ },
330
+ {
331
+ "cell_type": "code",
332
+ "execution_count": 14,
333
+ "metadata": {},
334
+ "outputs": [],
335
+ "source": [
336
+ "from sentence_transformers.evaluation import InformationRetrievalEvaluator\n",
337
+ "\n",
338
+ "corpus = val_dataset['corpus']\n",
339
+ "queries = val_dataset['questions']\n",
340
+ "relevant_docs = val_dataset['relevant_contexts']\n",
341
+ "\n",
342
+ "evaluator = InformationRetrievalEvaluator(queries, corpus, relevant_docs)"
343
+ ]
344
+ },
345
+ {
346
+ "cell_type": "code",
347
+ "execution_count": 15,
348
+ "metadata": {},
349
+ "outputs": [],
350
+ "source": [
351
+ "EPOCHS = 10"
352
+ ]
353
+ },
354
+ {
355
+ "cell_type": "code",
356
+ "execution_count": 16,
357
+ "metadata": {},
358
+ "outputs": [
359
+ {
360
+ "data": {
361
+ "text/html": [
362
+ "<button onClick=\"this.nextSibling.style.display='block';this.style.display='none';\">Display W&B run</button><iframe src='https://wandb.ai/dummy/dummy/runs/rhtwiupv?jupyter=true' style='border:none;width:100%;height:420px;display:none;'></iframe>"
363
+ ],
364
+ "text/plain": [
365
+ "<wandb.sdk.wandb_run.Run at 0x3315ad010>"
366
+ ]
367
+ },
368
+ "execution_count": 16,
369
+ "metadata": {},
370
+ "output_type": "execute_result"
371
+ }
372
+ ],
373
+ "source": [
374
+ "import wandb\n",
375
+ "wandb.init(mode=\"disabled\")"
376
+ ]
377
+ },
378
+ {
379
+ "cell_type": "code",
380
+ "execution_count": 17,
381
+ "metadata": {},
382
+ "outputs": [
383
+ {
384
+ "name": "stderr",
385
+ "output_type": "stream",
386
+ "text": [
387
+ "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m The `run_name` is currently set to the same value as `TrainingArguments.output_dir`. If this was not intended, please specify a different run name by setting the `TrainingArguments.run_name` parameter.\n"
388
+ ]
389
+ },
390
+ {
391
+ "data": {
392
+ "text/html": [
393
+ "\n",
394
+ " <div>\n",
395
+ " \n",
396
+ " <progress value='2' max='40' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
397
+ " [ 2/40 : < :, Epoch 0.25/10]\n",
398
+ " </div>\n",
399
+ " <table border=\"1\" class=\"dataframe\">\n",
400
+ " <thead>\n",
401
+ " <tr style=\"text-align: left;\">\n",
402
+ " <th>Step</th>\n",
403
+ " <th>Training Loss</th>\n",
404
+ " <th>Validation Loss</th>\n",
405
+ " </tr>\n",
406
+ " </thead>\n",
407
+ " <tbody>\n",
408
+ " </tbody>\n",
409
+ "</table><p>"
410
+ ],
411
+ "text/plain": [
412
+ "<IPython.core.display.HTML object>"
413
+ ]
414
+ },
415
+ "metadata": {},
416
+ "output_type": "display_data"
417
+ },
418
+ {
419
+ "ename": "KeyboardInterrupt",
420
+ "evalue": "",
421
+ "output_type": "error",
422
+ "traceback": [
423
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
424
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
425
+ "Cell \u001b[0;32mIn[17], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m warmup_steps \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mint\u001b[39m(\u001b[38;5;28mlen\u001b[39m(loader) \u001b[38;5;241m*\u001b[39m EPOCHS \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m0.1\u001b[39m)\n\u001b[0;32m----> 3\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrain_objectives\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43m(\u001b[49m\u001b[43mloader\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrain_loss\u001b[49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 5\u001b[0m \u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mEPOCHS\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 6\u001b[0m \u001b[43m \u001b[49m\u001b[43mwarmup_steps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mwarmup_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 7\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_path\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mfinetuned_arctic_ft\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mshow_progress_bar\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 9\u001b[0m \u001b[43m \u001b[49m\u001b[43mevaluator\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mevaluator\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 10\u001b[0m \u001b[43m \u001b[49m\u001b[43mevaluation_steps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m50\u001b[39;49m\n\u001b[1;32m 11\u001b[0m \u001b[43m)\u001b[49m\n",
426
+ "File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/sentence_transformers/fit_mixin.py:385\u001b[0m, in \u001b[0;36mFitMixin.fit\u001b[0;34m(self, train_objectives, evaluator, epochs, steps_per_epoch, scheduler, warmup_steps, optimizer_class, optimizer_params, weight_decay, evaluation_steps, output_path, save_best_model, max_grad_norm, use_amp, callback, show_progress_bar, checkpoint_path, checkpoint_save_steps, checkpoint_save_total_limit)\u001b[0m\n\u001b[1;32m 382\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m output_path \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 383\u001b[0m trainer\u001b[38;5;241m.\u001b[39madd_callback(SaveModelCallback(output_path, evaluator, save_best_model))\n\u001b[0;32m--> 385\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
427
+ "File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/transformers/trainer.py:2241\u001b[0m, in \u001b[0;36mTrainer.train\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m 2239\u001b[0m hf_hub_utils\u001b[38;5;241m.\u001b[39menable_progress_bars()\n\u001b[1;32m 2240\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2241\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43minner_training_loop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2242\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2243\u001b[0m \u001b[43m \u001b[49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2244\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrial\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrial\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2245\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2246\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
428
+ "File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/transformers/trainer.py:2599\u001b[0m, in \u001b[0;36mTrainer._inner_training_loop\u001b[0;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 2595\u001b[0m grad_norm \u001b[38;5;241m=\u001b[39m _grad_norm\n\u001b[1;32m 2597\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcallback_handler\u001b[38;5;241m.\u001b[39mon_pre_optimizer_step(args, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol)\n\u001b[0;32m-> 2599\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptimizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstep\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2601\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcallback_handler\u001b[38;5;241m.\u001b[39mon_optimizer_step(args, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol)\n\u001b[1;32m 2603\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maccelerator\u001b[38;5;241m.\u001b[39moptimizer_step_was_skipped:\n\u001b[1;32m 2604\u001b[0m \u001b[38;5;66;03m# Delay optimizer scheduling until metrics are generated\u001b[39;00m\n",
429
+ "File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/accelerate/optimizer.py:178\u001b[0m, in \u001b[0;36mAcceleratedOptimizer.step\u001b[0;34m(self, closure)\u001b[0m\n\u001b[1;32m 176\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_accelerate_step_called \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m 177\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 178\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptimizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstep\u001b[49m\u001b[43m(\u001b[49m\u001b[43mclosure\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 179\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maccelerator_state\u001b[38;5;241m.\u001b[39mdistributed_type \u001b[38;5;241m==\u001b[39m DistributedType\u001b[38;5;241m.\u001b[39mXLA:\n\u001b[1;32m 180\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgradient_state\u001b[38;5;241m.\u001b[39mis_xla_gradients_synced \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n",
430
+ "File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/torch/optim/lr_scheduler.py:140\u001b[0m, in \u001b[0;36mLRScheduler.__init__.<locals>.patch_track_step_called.<locals>.wrap_step.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 138\u001b[0m opt \u001b[38;5;241m=\u001b[39m opt_ref()\n\u001b[1;32m 139\u001b[0m opt\u001b[38;5;241m.\u001b[39m_opt_called \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m \u001b[38;5;66;03m# type: ignore[union-attr]\u001b[39;00m\n\u001b[0;32m--> 140\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__get__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mopt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mopt\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;18;43m__class__\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
431
+ "File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/torch/optim/optimizer.py:493\u001b[0m, in \u001b[0;36mOptimizer.profile_hook_step.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 488\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 489\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[1;32m 490\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfunc\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m must return None or a tuple of (new_args, new_kwargs), but got \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresult\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 491\u001b[0m )\n\u001b[0;32m--> 493\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 494\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_optimizer_step_code()\n\u001b[1;32m 496\u001b[0m \u001b[38;5;66;03m# call optimizer step post hooks\u001b[39;00m\n",
432
+ "File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/torch/optim/optimizer.py:91\u001b[0m, in \u001b[0;36m_use_grad_for_differentiable.<locals>._use_grad\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 89\u001b[0m torch\u001b[38;5;241m.\u001b[39mset_grad_enabled(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdefaults[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdifferentiable\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 90\u001b[0m torch\u001b[38;5;241m.\u001b[39m_dynamo\u001b[38;5;241m.\u001b[39mgraph_break()\n\u001b[0;32m---> 91\u001b[0m ret \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 92\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 93\u001b[0m torch\u001b[38;5;241m.\u001b[39m_dynamo\u001b[38;5;241m.\u001b[39mgraph_break()\n",
433
+ "File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/torch/optim/adamw.py:243\u001b[0m, in \u001b[0;36mAdamW.step\u001b[0;34m(self, closure)\u001b[0m\n\u001b[1;32m 230\u001b[0m beta1, beta2 \u001b[38;5;241m=\u001b[39m cast(Tuple[\u001b[38;5;28mfloat\u001b[39m, \u001b[38;5;28mfloat\u001b[39m], group[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbetas\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 232\u001b[0m has_complex \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_init_group(\n\u001b[1;32m 233\u001b[0m group,\n\u001b[1;32m 234\u001b[0m params_with_grad,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 240\u001b[0m state_steps,\n\u001b[1;32m 241\u001b[0m )\n\u001b[0;32m--> 243\u001b[0m \u001b[43madamw\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 244\u001b[0m \u001b[43m \u001b[49m\u001b[43mparams_with_grad\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 245\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrads\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 246\u001b[0m \u001b[43m \u001b[49m\u001b[43mexp_avgs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 247\u001b[0m \u001b[43m \u001b[49m\u001b[43mexp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 248\u001b[0m \u001b[43m \u001b[49m\u001b[43mmax_exp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 249\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 250\u001b[0m \u001b[43m \u001b[49m\u001b[43mamsgrad\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mamsgrad\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 251\u001b[0m \u001b[43m \u001b[49m\u001b[43mbeta1\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbeta1\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 252\u001b[0m \u001b[43m \u001b[49m\u001b[43mbeta2\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbeta2\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 253\u001b[0m \u001b[43m \u001b[49m\u001b[43mlr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlr\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 254\u001b[0m \u001b[43m \u001b[49m\u001b[43mweight_decay\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mweight_decay\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 255\u001b[0m \u001b[43m \u001b[49m\u001b[43meps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43meps\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 256\u001b[0m \u001b[43m \u001b[49m\u001b[43mmaximize\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmaximize\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 257\u001b[0m \u001b[43m \u001b[49m\u001b[43mforeach\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mforeach\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 258\u001b[0m \u001b[43m \u001b[49m\u001b[43mcapturable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcapturable\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 259\u001b[0m \u001b[43m \u001b[49m\u001b[43mdifferentiable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mdifferentiable\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 260\u001b[0m \u001b[43m \u001b[49m\u001b[43mfused\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfused\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 261\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrad_scale\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mgetattr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mgrad_scale\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 262\u001b[0m \u001b[43m \u001b[49m\u001b[43mfound_inf\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mgetattr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfound_inf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 263\u001b[0m \u001b[43m \u001b[49m\u001b[43mhas_complex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhas_complex\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 264\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 266\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m loss\n",
434
+ "File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/torch/optim/optimizer.py:154\u001b[0m, in \u001b[0;36m_disable_dynamo_if_unsupported.<locals>.wrapper.<locals>.maybe_fallback\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 152\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m disabled_func(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 153\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 154\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
435
+ "File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/torch/optim/adamw.py:875\u001b[0m, in \u001b[0;36madamw\u001b[0;34m(params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, foreach, capturable, differentiable, fused, grad_scale, found_inf, has_complex, amsgrad, beta1, beta2, lr, weight_decay, eps, maximize)\u001b[0m\n\u001b[1;32m 872\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 873\u001b[0m func \u001b[38;5;241m=\u001b[39m _single_tensor_adamw\n\u001b[0;32m--> 875\u001b[0m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 876\u001b[0m \u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 877\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrads\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 878\u001b[0m \u001b[43m \u001b[49m\u001b[43mexp_avgs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 879\u001b[0m \u001b[43m \u001b[49m\u001b[43mexp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 880\u001b[0m \u001b[43m \u001b[49m\u001b[43mmax_exp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 881\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 882\u001b[0m \u001b[43m \u001b[49m\u001b[43mamsgrad\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mamsgrad\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 883\u001b[0m \u001b[43m \u001b[49m\u001b[43mbeta1\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbeta1\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 884\u001b[0m \u001b[43m \u001b[49m\u001b[43mbeta2\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbeta2\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 885\u001b[0m \u001b[43m \u001b[49m\u001b[43mlr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlr\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 886\u001b[0m \u001b[43m \u001b[49m\u001b[43mweight_decay\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mweight_decay\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 887\u001b[0m \u001b[43m \u001b[49m\u001b[43meps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43meps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 888\u001b[0m \u001b[43m \u001b[49m\u001b[43mmaximize\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaximize\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 889\u001b[0m \u001b[43m \u001b[49m\u001b[43mcapturable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcapturable\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 890\u001b[0m \u001b[43m \u001b[49m\u001b[43mdifferentiable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdifferentiable\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 891\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrad_scale\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgrad_scale\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 892\u001b[0m \u001b[43m \u001b[49m\u001b[43mfound_inf\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfound_inf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 893\u001b[0m \u001b[43m \u001b[49m\u001b[43mhas_complex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhas_complex\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 894\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
436
+ "File \u001b[0;32m~/src/Simplify/.venv/lib/python3.12/site-packages/torch/optim/adamw.py:405\u001b[0m, in \u001b[0;36m_single_tensor_adamw\u001b[0;34m(params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, grad_scale, found_inf, amsgrad, beta1, beta2, lr, weight_decay, eps, maximize, capturable, differentiable, has_complex)\u001b[0m\n\u001b[1;32m 402\u001b[0m step_t \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 404\u001b[0m \u001b[38;5;66;03m# Perform stepweight decay\u001b[39;00m\n\u001b[0;32m--> 405\u001b[0m \u001b[43mparam\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmul_\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mlr\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mweight_decay\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 407\u001b[0m device \u001b[38;5;241m=\u001b[39m param\u001b[38;5;241m.\u001b[39mdevice\n\u001b[1;32m 409\u001b[0m device \u001b[38;5;241m=\u001b[39m param\u001b[38;5;241m.\u001b[39mdevice\n",
437
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
438
+ ]
439
+ }
440
+ ],
441
+ "source": [
442
+ "warmup_steps = int(len(loader) * EPOCHS * 0.1)\n",
443
+ "\n",
444
+ "model.fit(\n",
445
+ " train_objectives=[(loader, train_loss)],\n",
446
+ " epochs=EPOCHS,\n",
447
+ " warmup_steps=warmup_steps,\n",
448
+ " output_path='finetuned_arctic_ft',\n",
449
+ " show_progress_bar=True,\n",
450
+ " evaluator=evaluator,\n",
451
+ " evaluation_steps=50\n",
452
+ ")"
453
+ ]
454
+ },
455
+ {
456
+ "cell_type": "code",
457
+ "execution_count": null,
458
+ "metadata": {},
459
+ "outputs": [],
460
+ "source": [
461
+ "from huggingface_hub import notebook_login\n",
462
+ "\n",
463
+ "notebook_login()"
464
+ ]
465
+ },
466
+ {
467
+ "cell_type": "code",
468
+ "execution_count": null,
469
+ "metadata": {},
470
+ "outputs": [],
471
+ "source": [
472
+ "hf_username = \"Rsr2425\"\n",
473
+ "model.push_to_hub(f\"{hf_username}/simplify-embeddings\")"
474
+ ]
475
+ },
476
+ {
477
+ "cell_type": "code",
478
+ "execution_count": null,
479
+ "metadata": {},
480
+ "outputs": [],
481
+ "source": []
482
+ }
483
+ ],
484
+ "metadata": {
485
+ "kernelspec": {
486
+ "display_name": ".venv",
487
+ "language": "python",
488
+ "name": "python3"
489
+ },
490
+ "language_info": {
491
+ "codemirror_mode": {
492
+ "name": "ipython",
493
+ "version": 3
494
+ },
495
+ "file_extension": ".py",
496
+ "mimetype": "text/x-python",
497
+ "name": "python",
498
+ "nbconvert_exporter": "python",
499
+ "pygments_lexer": "ipython3",
500
+ "version": "3.12.0"
501
+ }
502
+ },
503
+ "nbformat": 4,
504
+ "nbformat_minor": 2
505
+ }
pyproject.toml CHANGED
@@ -24,6 +24,10 @@ dependencies = [
24
  "unstructured",
25
  "qdrant-client>=1.6.0",
26
  "ipykernel",
 
 
 
 
27
  ]
28
 
29
  [tool.setuptools]
 
24
  "unstructured",
25
  "qdrant-client>=1.6.0",
26
  "ipykernel",
27
+ "sentence-transformers>=3.4.1",
28
+ "transformers[torch]>=4.48.3",
29
+ "wandb>=0.19.6",
30
+ "datasets>=3.2.0",
31
  ]
32
 
33
  [tool.setuptools]