Added topics endpoint
Browse files- backend/app/main.py +13 -2
- backend/app/vectorstore.py +57 -38
- backend/tests/test_api.py +12 -1
- backend/tests/test_vectorstore.py +2 -2
backend/app/main.py
CHANGED
@@ -10,6 +10,7 @@ import asyncio
|
|
10 |
import logging
|
11 |
import os
|
12 |
from backend.app.crawler import DomainCrawler
|
|
|
13 |
|
14 |
app = FastAPI()
|
15 |
|
@@ -41,8 +42,12 @@ class FeedbackResponse(BaseModel):
|
|
41 |
feedback: List[str]
|
42 |
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
46 |
print(f"Received url {input_data.url}")
|
47 |
return {"status": "received"}
|
48 |
|
@@ -85,6 +90,12 @@ async def get_feedback(request: FeedbackRequest):
|
|
85 |
raise HTTPException(status_code=500, detail=str(e))
|
86 |
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
# Serve static files
|
89 |
app.mount("/static", StaticFiles(directory="/app/static/static"), name="static")
|
90 |
|
|
|
10 |
import logging
|
11 |
import os
|
12 |
from backend.app.crawler import DomainCrawler
|
13 |
+
from backend.app.vectorstore import get_all_unique_source_of_docs_in_collection_DUMB
|
14 |
|
15 |
app = FastAPI()
|
16 |
|
|
|
42 |
feedback: List[str]
|
43 |
|
44 |
|
45 |
+
class TopicsResponse(BaseModel):
|
46 |
+
sources: List[str]
|
47 |
+
|
48 |
+
|
49 |
+
@app.post("/api/ingest/")
|
50 |
+
async def ingest_documentation(input_data: UrlInput):
|
51 |
print(f"Received url {input_data.url}")
|
52 |
return {"status": "received"}
|
53 |
|
|
|
90 |
raise HTTPException(status_code=500, detail=str(e))
|
91 |
|
92 |
|
93 |
+
@app.post("/api/topics", response_model=TopicsResponse)
|
94 |
+
async def get_topics():
|
95 |
+
sources = get_all_unique_source_of_docs_in_collection_DUMB()
|
96 |
+
return {"sources": sources}
|
97 |
+
|
98 |
+
|
99 |
# Serve static files
|
100 |
app.mount("/static", StaticFiles(directory="/app/static/static"), name="static")
|
101 |
|
backend/app/vectorstore.py
CHANGED
@@ -43,38 +43,6 @@ _embedding_model: Optional[Union[OpenAIEmbeddings, HuggingFaceEmbeddings]] = Non
|
|
43 |
_embedding_model_id: str = None
|
44 |
|
45 |
|
46 |
-
def _get_qdrant_client():
|
47 |
-
global _qdrant_client_instance
|
48 |
-
|
49 |
-
if _qdrant_client_instance is None:
|
50 |
-
if (
|
51 |
-
os.environ.get("QDRANT_URL") is None
|
52 |
-
or os.environ.get("QDRANT_API_KEY") is None
|
53 |
-
):
|
54 |
-
logger.warning(
|
55 |
-
"QDRANT_URL or QDRANT_API_KEY is not set. Defaulting to local memory vector store."
|
56 |
-
)
|
57 |
-
|
58 |
-
os.makedirs(LOCAL_QDRANT_PATH, exist_ok=True)
|
59 |
-
_qdrant_client_instance = QdrantClient(path=LOCAL_QDRANT_PATH)
|
60 |
-
# _qdrant_client_instance = QdrantClient(":memory:")
|
61 |
-
return _qdrant_client_instance
|
62 |
-
|
63 |
-
logger.info(
|
64 |
-
f"Attempting to connect to Qdrant at {os.environ.get("QDRANT_URL")}"
|
65 |
-
)
|
66 |
-
try:
|
67 |
-
_qdrant_client_instance = QdrantClient(
|
68 |
-
url=os.environ.get("QDRANT_URL"),
|
69 |
-
api_key=os.environ.get("QDRANT_API_KEY"),
|
70 |
-
)
|
71 |
-
logger.info("Successfully connected to Qdrant Cloud")
|
72 |
-
except Exception as e:
|
73 |
-
logger.error(f"Failed to connect to Qdrant Cloud: {str(e)}")
|
74 |
-
raise e
|
75 |
-
return _qdrant_client_instance
|
76 |
-
|
77 |
-
|
78 |
def _initialize_vector_db():
|
79 |
os.makedirs("static/data", exist_ok=True)
|
80 |
|
@@ -112,10 +80,44 @@ def _initialize_vector_db():
|
|
112 |
)
|
113 |
|
114 |
|
115 |
-
def
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
) -> List[Document]:
|
118 |
-
response =
|
119 |
collection_name=collection_name,
|
120 |
limit=limit,
|
121 |
offset=offset,
|
@@ -128,7 +130,7 @@ def get_all_unique_source_docs_in_collection(
|
|
128 |
if "source" in point.payload:
|
129 |
result.add(point.payload["source"])
|
130 |
offset = response[1]
|
131 |
-
response =
|
132 |
collection_name=collection_name,
|
133 |
limit=limit,
|
134 |
offset=offset + limit,
|
@@ -136,6 +138,23 @@ def get_all_unique_source_docs_in_collection(
|
|
136 |
return list(result)
|
137 |
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
def store_documents(
|
140 |
documents: List[Document],
|
141 |
collection_name: str,
|
@@ -145,7 +164,7 @@ def store_documents(
|
|
145 |
assert _vector_db_instance is not None, "Vector database instance not initialized"
|
146 |
|
147 |
embedding_model = get_embedding_model(embedding_model_id)
|
148 |
-
client =
|
149 |
|
150 |
_vector_db_instance.add_documents(
|
151 |
documents=documents,
|
@@ -181,7 +200,7 @@ def get_vector_db(embedding_model_id: str = None) -> QdrantVectorStore:
|
|
181 |
need_to_initialize_db = False
|
182 |
embedding_model = get_embedding_model(embedding_model_id)
|
183 |
|
184 |
-
client =
|
185 |
|
186 |
if not check_collection_exists(client, PROBLEMS_REFERENCE_COLLECTION_NAME):
|
187 |
client.create_collection(
|
|
|
43 |
_embedding_model_id: str = None
|
44 |
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
def _initialize_vector_db():
|
47 |
os.makedirs("static/data", exist_ok=True)
|
48 |
|
|
|
80 |
)
|
81 |
|
82 |
|
83 |
+
def get_qdrant_client():
|
84 |
+
global _qdrant_client_instance
|
85 |
+
|
86 |
+
if _qdrant_client_instance is None:
|
87 |
+
if (
|
88 |
+
os.environ.get("QDRANT_URL") is None
|
89 |
+
or os.environ.get("QDRANT_API_KEY") is None
|
90 |
+
):
|
91 |
+
logger.warning(
|
92 |
+
"QDRANT_URL or QDRANT_API_KEY is not set. Defaulting to local memory vector store."
|
93 |
+
)
|
94 |
+
|
95 |
+
os.makedirs(LOCAL_QDRANT_PATH, exist_ok=True)
|
96 |
+
_qdrant_client_instance = QdrantClient(path=LOCAL_QDRANT_PATH)
|
97 |
+
# _qdrant_client_instance = QdrantClient(":memory:")
|
98 |
+
return _qdrant_client_instance
|
99 |
+
|
100 |
+
logger.info(
|
101 |
+
f"Attempting to connect to Qdrant at {os.environ.get("QDRANT_URL")}"
|
102 |
+
)
|
103 |
+
try:
|
104 |
+
_qdrant_client_instance = QdrantClient(
|
105 |
+
url=os.environ.get("QDRANT_URL"),
|
106 |
+
api_key=os.environ.get("QDRANT_API_KEY"),
|
107 |
+
)
|
108 |
+
logger.info("Successfully connected to Qdrant Cloud")
|
109 |
+
except Exception as e:
|
110 |
+
logger.error(f"Failed to connect to Qdrant Cloud: {str(e)}")
|
111 |
+
raise e
|
112 |
+
return _qdrant_client_instance
|
113 |
+
|
114 |
+
|
115 |
+
def get_all_unique_source_of_docs_in_collection(
|
116 |
+
collection_name: str = PROBLEMS_REFERENCE_COLLECTION_NAME,
|
117 |
+
limit: int = 1000,
|
118 |
+
offset: int = 0,
|
119 |
) -> List[Document]:
|
120 |
+
response = get_qdrant_client().scroll(
|
121 |
collection_name=collection_name,
|
122 |
limit=limit,
|
123 |
offset=offset,
|
|
|
130 |
if "source" in point.payload:
|
131 |
result.add(point.payload["source"])
|
132 |
offset = response[1]
|
133 |
+
response = get_qdrant_client().scroll(
|
134 |
collection_name=collection_name,
|
135 |
limit=limit,
|
136 |
offset=offset + limit,
|
|
|
138 |
return list(result)
|
139 |
|
140 |
|
141 |
+
# TODO This is a dumb hack to get around Qdrant client restrictions when using local file storage.
|
142 |
+
# Instead of using the client directly, we use QdrantVectorStore's similarity search
|
143 |
+
# with a dummy query to get all documents, then extract unique sources.
|
144 |
+
def get_all_unique_source_of_docs_in_collection_DUMB(
|
145 |
+
collection_name: str = PROBLEMS_REFERENCE_COLLECTION_NAME,
|
146 |
+
) -> List[str]:
|
147 |
+
vector_store = get_vector_db()
|
148 |
+
# Use a very generic query that should match everything
|
149 |
+
docs = vector_store.similarity_search("",k=1000)
|
150 |
+
|
151 |
+
sources = set()
|
152 |
+
for doc in docs:
|
153 |
+
if doc.metadata and "title" in doc.metadata:
|
154 |
+
sources.add(doc.metadata["title"])
|
155 |
+
return list(sources)
|
156 |
+
|
157 |
+
|
158 |
def store_documents(
|
159 |
documents: List[Document],
|
160 |
collection_name: str,
|
|
|
164 |
assert _vector_db_instance is not None, "Vector database instance not initialized"
|
165 |
|
166 |
embedding_model = get_embedding_model(embedding_model_id)
|
167 |
+
client = get_qdrant_client()
|
168 |
|
169 |
_vector_db_instance.add_documents(
|
170 |
documents=documents,
|
|
|
200 |
need_to_initialize_db = False
|
201 |
embedding_model = get_embedding_model(embedding_model_id)
|
202 |
|
203 |
+
client = get_qdrant_client()
|
204 |
|
205 |
if not check_collection_exists(client, PROBLEMS_REFERENCE_COLLECTION_NAME):
|
206 |
client.create_collection(
|
backend/tests/test_api.py
CHANGED
@@ -6,7 +6,7 @@ client = TestClient(app)
|
|
6 |
|
7 |
|
8 |
def test_crawl_endpoint():
|
9 |
-
response = client.post("/api/
|
10 |
assert response.status_code == 200
|
11 |
assert response.json() == {"status": "received"}
|
12 |
|
@@ -61,3 +61,14 @@ def test_successful_feedback():
|
|
61 |
for feedback in result["feedback"]:
|
62 |
assert feedback.strip().startswith(("Correct", "Incorrect"))
|
63 |
assert len(feedback.split(". ")) >= 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
def test_crawl_endpoint():
|
9 |
+
response = client.post("/api/ingest/", json={"url": "https://example.com"})
|
10 |
assert response.status_code == 200
|
11 |
assert response.json() == {"status": "received"}
|
12 |
|
|
|
61 |
for feedback in result["feedback"]:
|
62 |
assert feedback.strip().startswith(("Correct", "Incorrect"))
|
63 |
assert len(feedback.split(". ")) >= 2
|
64 |
+
|
65 |
+
|
66 |
+
def test_topics_endpoint():
|
67 |
+
"""Test that topics endpoint returns expected sources"""
|
68 |
+
response = client.post("/api/topics")
|
69 |
+
assert response.status_code == 200
|
70 |
+
result = response.json()
|
71 |
+
|
72 |
+
assert "sources" in result
|
73 |
+
assert len(result["sources"]) == 1
|
74 |
+
assert result["sources"][0] == "LangChain RAG Tutorial"
|
backend/tests/test_vectorstore.py
CHANGED
@@ -4,7 +4,7 @@ import pytest
|
|
4 |
import requests
|
5 |
|
6 |
from langchain.schema import Document
|
7 |
-
from backend.app.vectorstore import get_vector_db,
|
8 |
|
9 |
|
10 |
def test_directory_creation():
|
@@ -72,7 +72,7 @@ def test_qdrant_cloud_connection():
|
|
72 |
print(f"Port: {parsed_url.port}")
|
73 |
print(f"Path: {parsed_url.path}")
|
74 |
|
75 |
-
client =
|
76 |
client.get_collections()
|
77 |
assert True, "Connection successful"
|
78 |
except Exception as e:
|
|
|
4 |
import requests
|
5 |
|
6 |
from langchain.schema import Document
|
7 |
+
from backend.app.vectorstore import get_vector_db, get_qdrant_client
|
8 |
|
9 |
|
10 |
def test_directory_creation():
|
|
|
72 |
print(f"Port: {parsed_url.port}")
|
73 |
print(f"Path: {parsed_url.path}")
|
74 |
|
75 |
+
client = get_qdrant_client()
|
76 |
client.get_collections()
|
77 |
assert True, "Connection successful"
|
78 |
except Exception as e:
|