""" Super early version of a vector store. Just want to make something available for the rest of the app to use. Vector store implementation with singleton pattern to ensure only one instance exists. """ import os import requests import nltk import logging from typing import Optional from langchain_community.vectorstores import Qdrant from langchain_openai.embeddings import OpenAIEmbeddings from langchain_community.document_loaders import DirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_huggingface import HuggingFaceEmbeddings from qdrant_client import QdrantClient nltk.download("punkt_tab") nltk.download("averaged_perceptron_tagger_eng") DEFAULT_EMBEDDING_MODEL_ID = "text-embedding-3-small" LOCAL_QDRANT_PATH = "/data/qdrant_db" logger = logging.getLogger(__name__) # Global variable to store the singleton instance _vector_db_instance: Optional[Qdrant] = None # TODO fix bug. There's a logical error where if you change the embedding model, the vector db instance might not updated # to match the new embedding model. _embedding_model_id: str = None def get_qdrant_client(): if os.environ.get("QDRANT_URL") is None or os.environ.get("QDRANT_API_KEY") is None: logger.error( "QDRANT_URL or QDRANT_API_KEY is not set. Defaulting to local memory vector store." ) os.makedirs(LOCAL_QDRANT_PATH, exist_ok=True) return QdrantClient(path=LOCAL_QDRANT_PATH) QDRANT_URL = os.environ.get("QDRANT_URL") QDRANT_API_KEY = os.environ.get("QDRANT_API_KEY") return QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY) def get_vector_db(embedding_model_id: str = None) -> Qdrant: """ Factory function that returns a singleton instance of the vector database. Creates the instance if it doesn't exist. """ global _vector_db_instance if _vector_db_instance is None: # Create static/data directory if it doesn't exist os.makedirs("static/data", exist_ok=True) # Download and save the webpage if it doesn't exist html_path = "static/data/langchain_rag_tutorial.html" if not os.path.exists(html_path): url = "https://python.langchain.com/docs/tutorials/rag/" response = requests.get(url) with open(html_path, "w", encoding="utf-8") as f: f.write(response.text) embedding_model = None if embedding_model_id is None: embedding_model = OpenAIEmbeddings(modzŻel=DEFAULT_EMBEDDING_MODEL_ID) else: embedding_model = HuggingFaceEmbeddings(model_name=embedding_model_id) # Load HTML files from static/data directory loader = DirectoryLoader("static/data", glob="*.html") documents = loader.load() # Split documents into chunks text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200 ) split_chunks = text_splitter.split_documents(documents) # Create vector store instance client = get_qdrant_client() _vector_db_instance = Qdrant.from_documents( split_chunks, embedding_model, client=client, collection_name="extending_context_window_llama_3", ) return _vector_db_instance