{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[nltk_data] Downloading package punkt_tab to\n", "[nltk_data] /Users/ryanrodriguez/nltk_data...\n", "[nltk_data] Package punkt_tab is already up-to-date!\n", "[nltk_data] Downloading package averaged_perceptron_tagger_eng to\n", "[nltk_data] /Users/ryanrodriguez/nltk_data...\n", "[nltk_data] Package averaged_perceptron_tagger_eng is already up-to-\n", "[nltk_data] date!\n" ] } ], "source": [ "from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser\n", "from langchain_core.prompts import ChatPromptTemplate\n", "from langchain_openai import ChatOpenAI\n", "from langchain.chains import create_retrieval_chain\n", "from langchain.chains.combine_documents import create_stuff_documents_chain\n", "from backend.app.vectorstore import get_vector_db" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "system_role_prompt = \"\"\"\n", " You are a helpful assistant that generates questions based on a given context.\n", "\"\"\"\n", "\n", "user_role_prompt = \"\"\"\n", " Based on the following context about {query}, generate 5 relevant and specific questions.\n", " Make sure the questions can be answered using only the provided context.\n", "\n", " Context: {context}\n", "\n", " Generate 5 questions that test understanding of the material in the context.\n", " \n", " Return only a json object with the following format:\n", " {{\n", " \"questions\": [\"question1\", \"question2\", \"question3\", \"question4\", \"question5\"]\n", " }}\n", "\"\"\"\n" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "chat_prompt = ChatPromptTemplate.from_messages([\n", " (\"system\", system_role_prompt),\n", " (\"user\", user_role_prompt)\n", "])\n", "\n", "openai_chat_model = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0.7)\n", "\n", "retriever = get_vector_db().as_retriever(search_kwargs={\"k\": 2})\n" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "from langchain_core.runnables import RunnablePassthrough\n", "from langchain_core.output_parsers import StrOutputParser\n", "\n", "simple_rag = (\n", " {\"context\": retriever, \"query\": RunnablePassthrough(), \"num_questions\": RunnablePassthrough()}\n", " | chat_prompt\n", " | openai_chat_model\n", " | StrOutputParser()\n", ")" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "raw_result = simple_rag.invoke(\"RAG\")" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['What are the two main components of a typical RAG application?',\n", " 'What is the purpose of the indexing component in a RAG application?',\n", " \"What are the steps involved in the 'Load' phase of indexing?\",\n", " 'Why is splitting text into smaller chunks important in the context of RAG applications?',\n", " 'How does the retrieval and generation component of a RAG application process user queries?']" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import json\n", "result = json.loads(raw_result)\n", "result[\"questions\"]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.0" } }, "nbformat": 4, "nbformat_minor": 2 }