Spaces:
Sleeping
Sleeping
added chat memory and fixed sys_message bugs
Browse files- app.py +32 -88
- requirements.txt +2 -1
- utils/chain.py +21 -3
app.py
CHANGED
@@ -2,7 +2,6 @@
|
|
2 |
|
3 |
# OpenAI Chat completion
|
4 |
import os
|
5 |
-
from openai import AsyncOpenAI # importing openai for API usage
|
6 |
import chainlit as cl # importing chainlit for our app
|
7 |
from chainlit.prompt import Prompt, PromptMessage # importing prompt tools
|
8 |
from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools
|
@@ -18,18 +17,14 @@ from utils.store import index_documents
|
|
18 |
from utils.chain import create_chain
|
19 |
from langchain.vectorstores import Pinecone
|
20 |
from langchain.chat_models import ChatOpenAI
|
21 |
-
from langchain.prompts import ChatPromptTemplate
|
22 |
-
from langchain.prompts import PromptTemplate
|
23 |
-
from operator import itemgetter
|
24 |
from langchain.schema.runnable import RunnableSequence
|
25 |
from langchain.schema import format_document
|
26 |
-
from langchain.schema.output_parser import StrOutputParser
|
27 |
-
from langchain.prompts.prompt import PromptTemplate
|
28 |
from pprint import pprint
|
29 |
-
from langchain_core.documents.base import Document
|
30 |
from langchain_core.vectorstores import VectorStoreRetriever
|
31 |
import langchain
|
32 |
from langchain.cache import InMemoryCache
|
|
|
|
|
33 |
|
34 |
load_dotenv()
|
35 |
YOUR_API_KEY = os.environ["PINECONE_API_KEY"]
|
@@ -97,11 +92,16 @@ async def start_chat():
|
|
97 |
# log data in WaB (on start)
|
98 |
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
|
99 |
|
|
|
|
|
|
|
|
|
100 |
tools = {
|
101 |
"arxiv_client": arxiv_client,
|
102 |
"index": index,
|
103 |
"embedder": embedder,
|
104 |
-
"llm": llm
|
|
|
105 |
}
|
106 |
cl.user_session.set("tools", tools)
|
107 |
cl.user_session.set("settings", settings)
|
@@ -111,18 +111,23 @@ async def start_chat():
|
|
111 |
@cl.on_message # marks a function that should be run each time the chatbot receives a message from a user
|
112 |
async def main(message: cl.Message):
|
113 |
settings = cl.user_session.get("settings")
|
114 |
-
tools =
|
115 |
first_run = cl.user_session.get("first_run")
|
|
|
|
|
116 |
|
|
|
|
|
|
|
117 |
if not first_run:
|
118 |
|
119 |
arxiv_client: arxiv.Client = tools['arxiv_client']
|
120 |
index: pinecone.GRPCIndex = tools['index']
|
121 |
embedder: CacheBackedEmbeddings = tools['embedder']
|
122 |
llm: ChatOpenAI = tools['llm']
|
|
|
123 |
|
124 |
# using query search for ArXiv documents (on message)
|
125 |
-
|
126 |
search = arxiv.Search(
|
127 |
query = message.content,
|
128 |
max_results = 10,
|
@@ -130,18 +135,10 @@ async def main(message: cl.Message):
|
|
130 |
)
|
131 |
paper_urls = []
|
132 |
|
133 |
-
|
134 |
-
await sys_message.send() # renders a loader
|
135 |
for result in arxiv_client.results(search):
|
136 |
paper_urls.append(result.pdf_url)
|
137 |
-
sys_message.content = """
|
138 |
-
I found some papers, let me study them real quick to help
|
139 |
-
you learn, don't worry it'll be a few seconds 😉"""
|
140 |
-
await sys_message.update()
|
141 |
-
await sys_message.send()
|
142 |
|
143 |
-
sys_message = cl.Message(content="")
|
144 |
-
await sys_message.send() # renders a loader
|
145 |
# load them and split them (on message)
|
146 |
docs = []
|
147 |
for paper_url in paper_urls:
|
@@ -159,9 +156,6 @@ async def main(message: cl.Message):
|
|
159 |
|
160 |
# create an index using pinecone (on message)
|
161 |
index_documents(docs, text_splitter, embedder, index)
|
162 |
-
sys_message.content = "Done studying :)"
|
163 |
-
await sys_message.update()
|
164 |
-
await sys_message.send()
|
165 |
|
166 |
text_field = "source_document"
|
167 |
index = pinecone.Index(INDEX_NAME)
|
@@ -174,74 +168,24 @@ async def main(message: cl.Message):
|
|
174 |
|
175 |
# create the chain (on message)
|
176 |
retrieval_augmented_qa_chain: RunnableSequence = create_chain(retriever=retriever, llm=llm)
|
|
|
177 |
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
# run
|
183 |
-
|
184 |
-
for chunk in retrieval_augmented_qa_chain.stream({"question": f"{message.content}"}):
|
185 |
pprint(chunk)
|
186 |
if res:= chunk.get('response'):
|
187 |
-
await
|
188 |
-
await
|
189 |
-
cl.user_session.set("first_run", True)
|
190 |
-
# first_run = True
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
# else:
|
201 |
-
# results_string = ""
|
202 |
-
|
203 |
-
# prompt = Prompt(
|
204 |
-
# provider=ChatOpenAI.id,
|
205 |
-
# messages=[
|
206 |
-
# PromptMessage(
|
207 |
-
# role="system",
|
208 |
-
# template=system_template,
|
209 |
-
# formatted=system_template,
|
210 |
-
# ),
|
211 |
-
# PromptMessage(
|
212 |
-
# role="user",
|
213 |
-
# template=user_template,
|
214 |
-
# formatted=user_template.format(input=message.content),
|
215 |
-
# ),
|
216 |
-
# PromptMessage(
|
217 |
-
# role="assistant",
|
218 |
-
# template=assistant_template,
|
219 |
-
# formatted=assistant_template.format(context=results_string)
|
220 |
-
# )
|
221 |
-
# ],
|
222 |
-
# inputs={
|
223 |
-
# "input": message.content,
|
224 |
-
# "context": results_string
|
225 |
-
# },
|
226 |
-
# settings=settings,
|
227 |
-
# )
|
228 |
-
|
229 |
-
# print([m.to_openai() for m in prompt.messages])
|
230 |
-
|
231 |
-
# msg = cl.Message(content="")
|
232 |
-
|
233 |
-
# # Call OpenAI
|
234 |
-
# async for stream_resp in await client.chat.completions.create(
|
235 |
-
# messages=[m.to_openai() for m in prompt.messages], stream=True, **settings
|
236 |
-
# ):
|
237 |
-
# token = stream_resp.choices[0].delta.content
|
238 |
-
# if not token:
|
239 |
-
# token = ""
|
240 |
-
# await msg.stream_token(token)
|
241 |
-
|
242 |
-
# # Update the prompt object with the completion
|
243 |
-
# prompt.completion = msg.content
|
244 |
-
# msg.prompt = prompt
|
245 |
-
|
246 |
-
# # Send and close the message stream
|
247 |
-
# await msg.send()
|
|
|
2 |
|
3 |
# OpenAI Chat completion
|
4 |
import os
|
|
|
5 |
import chainlit as cl # importing chainlit for our app
|
6 |
from chainlit.prompt import Prompt, PromptMessage # importing prompt tools
|
7 |
from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools
|
|
|
17 |
from utils.chain import create_chain
|
18 |
from langchain.vectorstores import Pinecone
|
19 |
from langchain.chat_models import ChatOpenAI
|
|
|
|
|
|
|
20 |
from langchain.schema.runnable import RunnableSequence
|
21 |
from langchain.schema import format_document
|
|
|
|
|
22 |
from pprint import pprint
|
|
|
23 |
from langchain_core.vectorstores import VectorStoreRetriever
|
24 |
import langchain
|
25 |
from langchain.cache import InMemoryCache
|
26 |
+
from langchain_core.messages.human import HumanMessage
|
27 |
+
from langchain.memory import ConversationBufferMemory
|
28 |
|
29 |
load_dotenv()
|
30 |
YOUR_API_KEY = os.environ["PINECONE_API_KEY"]
|
|
|
92 |
# log data in WaB (on start)
|
93 |
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
|
94 |
|
95 |
+
# setup memory
|
96 |
+
|
97 |
+
memory = ConversationBufferMemory(memory_key="chat_history")
|
98 |
+
|
99 |
tools = {
|
100 |
"arxiv_client": arxiv_client,
|
101 |
"index": index,
|
102 |
"embedder": embedder,
|
103 |
+
"llm": llm,
|
104 |
+
"memory": memory
|
105 |
}
|
106 |
cl.user_session.set("tools", tools)
|
107 |
cl.user_session.set("settings", settings)
|
|
|
111 |
@cl.on_message # marks a function that should be run each time the chatbot receives a message from a user
|
112 |
async def main(message: cl.Message):
|
113 |
settings = cl.user_session.get("settings")
|
114 |
+
tools: dict = cl.user_session.get("tools")
|
115 |
first_run = cl.user_session.get("first_run")
|
116 |
+
retrieval_augmented_qa_chain = cl.user_session.get("chain", None)
|
117 |
+
memory: ConversationBufferMemory = cl.user_session.get("memory")
|
118 |
|
119 |
+
sys_message = cl.Message(content="")
|
120 |
+
await sys_message.send() # renders a loader
|
121 |
+
|
122 |
if not first_run:
|
123 |
|
124 |
arxiv_client: arxiv.Client = tools['arxiv_client']
|
125 |
index: pinecone.GRPCIndex = tools['index']
|
126 |
embedder: CacheBackedEmbeddings = tools['embedder']
|
127 |
llm: ChatOpenAI = tools['llm']
|
128 |
+
memory: ConversationBufferMemory = tools['memory']
|
129 |
|
130 |
# using query search for ArXiv documents (on message)
|
|
|
131 |
search = arxiv.Search(
|
132 |
query = message.content,
|
133 |
max_results = 10,
|
|
|
135 |
)
|
136 |
paper_urls = []
|
137 |
|
138 |
+
|
|
|
139 |
for result in arxiv_client.results(search):
|
140 |
paper_urls.append(result.pdf_url)
|
|
|
|
|
|
|
|
|
|
|
141 |
|
|
|
|
|
142 |
# load them and split them (on message)
|
143 |
docs = []
|
144 |
for paper_url in paper_urls:
|
|
|
156 |
|
157 |
# create an index using pinecone (on message)
|
158 |
index_documents(docs, text_splitter, embedder, index)
|
|
|
|
|
|
|
159 |
|
160 |
text_field = "source_document"
|
161 |
index = pinecone.Index(INDEX_NAME)
|
|
|
168 |
|
169 |
# create the chain (on message)
|
170 |
retrieval_augmented_qa_chain: RunnableSequence = create_chain(retriever=retriever, llm=llm)
|
171 |
+
cl.user_session.set("chain", retrieval_augmented_qa_chain)
|
172 |
|
173 |
+
sys_message.content = """
|
174 |
+
I found some papers and studied them 😉 \n"""
|
175 |
+
await sys_message.update()
|
176 |
+
|
177 |
# run
|
178 |
+
for chunk in retrieval_augmented_qa_chain.stream({"question": f"{message.content}", "chat_history": memory.buffer_as_messages}):
|
|
|
179 |
pprint(chunk)
|
180 |
if res:= chunk.get('response'):
|
181 |
+
await sys_message.stream_token(res.content)
|
182 |
+
await sys_message.send()
|
|
|
|
|
183 |
|
184 |
+
memory.chat_memory.add_user_message(message.content)
|
185 |
+
memory.chat_memory.add_ai_message(sys_message.content)
|
186 |
+
|
187 |
+
print(memory.buffer_as_str)
|
188 |
+
|
189 |
+
|
190 |
+
cl.user_session.set("memory", memory)
|
191 |
+
cl.user_session.set("first_run", True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -6,4 +6,5 @@ python-dotenv==1.0.0
|
|
6 |
numpy==1.25.2
|
7 |
langchain
|
8 |
pinecone-client[grpc]
|
9 |
-
pypdf
|
|
|
|
6 |
numpy==1.25.2
|
7 |
langchain
|
8 |
pinecone-client[grpc]
|
9 |
+
pypdf
|
10 |
+
arxiv
|
utils/chain.py
CHANGED
@@ -2,10 +2,12 @@ from operator import itemgetter
|
|
2 |
from langchain_core.vectorstores import VectorStoreRetriever
|
3 |
from langchain.schema.runnable import RunnableLambda, RunnableParallel, RunnableSequence
|
4 |
from langchain.chat_models import ChatOpenAI
|
5 |
-
from langchain.prompts import PromptTemplate
|
6 |
from langchain_core.documents import Document
|
7 |
from langchain_core.messages.ai import AIMessage
|
8 |
-
|
|
|
|
|
9 |
|
10 |
template = """
|
11 |
You are a helpful assistant, your job is to answer the user's question using the relevant context.
|
@@ -16,7 +18,21 @@ CONTEXT
|
|
16 |
|
17 |
User question: {question}
|
18 |
"""
|
|
|
19 |
prompt = PromptTemplate.from_template(template=template)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
|
22 |
def to_doc(input: AIMessage) -> list[Document]:
|
@@ -46,7 +62,7 @@ def create_chain(**kwargs) -> RunnableSequence:
|
|
46 |
|
47 |
docs_chain = (itemgetter("question") | retriever).with_config(config={"run_name": "docs"})
|
48 |
self_knowledge_chain = (itemgetter("question") | llm | to_doc).with_config(config={"run_name": "self knowledge"})
|
49 |
-
response_chain = (
|
50 |
merge_docs_link = RunnableLambda(merge_docs).with_config(config={"run_name": "merge docs"})
|
51 |
context_chain = (
|
52 |
RunnableParallel(
|
@@ -61,11 +77,13 @@ def create_chain(**kwargs) -> RunnableSequence:
|
|
61 |
retrieval_augmented_qa_chain = (
|
62 |
RunnableParallel({
|
63 |
"question": itemgetter("question"),
|
|
|
64 |
"context": context_chain
|
65 |
})
|
66 |
| RunnableParallel({
|
67 |
"response": response_chain,
|
68 |
"context": itemgetter("context"),
|
|
|
69 |
})
|
70 |
)
|
71 |
return retrieval_augmented_qa_chain
|
|
|
2 |
from langchain_core.vectorstores import VectorStoreRetriever
|
3 |
from langchain.schema.runnable import RunnableLambda, RunnableParallel, RunnableSequence
|
4 |
from langchain.chat_models import ChatOpenAI
|
5 |
+
from langchain.prompts import PromptTemplate, ChatPromptTemplate, MessagesPlaceholder
|
6 |
from langchain_core.documents import Document
|
7 |
from langchain_core.messages.ai import AIMessage
|
8 |
+
from langchain_core.messages.human import HumanMessage
|
9 |
+
from langchain_core.messages.system import SystemMessage
|
10 |
+
from langchain_core.messages.function import FunctionMessage
|
11 |
|
12 |
template = """
|
13 |
You are a helpful assistant, your job is to answer the user's question using the relevant context.
|
|
|
18 |
|
19 |
User question: {question}
|
20 |
"""
|
21 |
+
|
22 |
prompt = PromptTemplate.from_template(template=template)
|
23 |
+
chat_prompt = ChatPromptTemplate.from_messages([
|
24 |
+
("system", """
|
25 |
+
You are a helpful assistant, your job is to answer the user's question using the relevant context:
|
26 |
+
=========
|
27 |
+
CONTEXT:
|
28 |
+
{context}
|
29 |
+
=========
|
30 |
+
"""),
|
31 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
32 |
+
("human", "{question}")
|
33 |
+
])
|
34 |
+
|
35 |
+
|
36 |
|
37 |
|
38 |
def to_doc(input: AIMessage) -> list[Document]:
|
|
|
62 |
|
63 |
docs_chain = (itemgetter("question") | retriever).with_config(config={"run_name": "docs"})
|
64 |
self_knowledge_chain = (itemgetter("question") | llm | to_doc).with_config(config={"run_name": "self knowledge"})
|
65 |
+
response_chain = (chat_prompt | llm).with_config(config={"run_name": "response"})
|
66 |
merge_docs_link = RunnableLambda(merge_docs).with_config(config={"run_name": "merge docs"})
|
67 |
context_chain = (
|
68 |
RunnableParallel(
|
|
|
77 |
retrieval_augmented_qa_chain = (
|
78 |
RunnableParallel({
|
79 |
"question": itemgetter("question"),
|
80 |
+
"chat_history": itemgetter("chat_history"),
|
81 |
"context": context_chain
|
82 |
})
|
83 |
| RunnableParallel({
|
84 |
"response": response_chain,
|
85 |
"context": itemgetter("context"),
|
86 |
+
"chat_history": itemgetter("chat_history")
|
87 |
})
|
88 |
)
|
89 |
return retrieval_augmented_qa_chain
|