Spaces:
Sleeping
Sleeping
switched from openai to azure openai
Browse files
app.py
CHANGED
@@ -9,21 +9,21 @@ from dotenv import load_dotenv
|
|
9 |
import arxiv
|
10 |
import pinecone
|
11 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
|
|
|
12 |
from langchain.embeddings import CacheBackedEmbeddings
|
13 |
from langchain.storage import LocalFileStore, InMemoryStore
|
14 |
from utils.store import index_documents, search_and_index
|
15 |
from utils.chain import create_chain
|
16 |
from langchain.vectorstores import Pinecone
|
17 |
-
|
18 |
from langchain.schema.runnable import RunnableSequence
|
19 |
from langchain.schema import format_document
|
20 |
from pprint import pprint
|
21 |
from langchain_core.vectorstores import VectorStoreRetriever
|
22 |
import langchain
|
23 |
from langchain.cache import InMemoryCache
|
24 |
-
from langchain_core.messages.human import HumanMessage
|
25 |
from langchain.memory import ConversationBufferMemory
|
26 |
-
from chainlit import make_async
|
27 |
|
28 |
load_dotenv()
|
29 |
YOUR_API_KEY = os.environ["PINECONE_API_KEY"]
|
@@ -42,14 +42,16 @@ async def start_chat():
|
|
42 |
}
|
43 |
|
44 |
await cl.Message(
|
45 |
-
content="
|
46 |
).send()
|
47 |
|
48 |
# create an embedder through a cache interface (locally) (on start)
|
49 |
store = InMemoryStore()
|
50 |
|
51 |
-
core_embeddings_model =
|
52 |
-
api_key=os.environ['
|
|
|
|
|
53 |
)
|
54 |
|
55 |
embedder = CacheBackedEmbeddings.from_bytes_store(
|
@@ -71,13 +73,13 @@ async def start_chat():
|
|
71 |
dimension=1536
|
72 |
)
|
73 |
index = pinecone.GRPCIndex(INDEX_NAME)
|
74 |
-
|
75 |
-
|
76 |
-
llm = ChatOpenAI(
|
77 |
-
model=settings['model'],
|
78 |
temperature=settings['temperature'],
|
79 |
max_tokens=settings['max_tokens'],
|
80 |
-
api_key=os.environ[
|
|
|
|
|
81 |
streaming=True
|
82 |
)
|
83 |
|
@@ -89,7 +91,6 @@ async def start_chat():
|
|
89 |
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
|
90 |
|
91 |
# setup memory
|
92 |
-
|
93 |
memory = ConversationBufferMemory(memory_key="chat_history")
|
94 |
|
95 |
tools = {
|
@@ -102,7 +103,7 @@ async def start_chat():
|
|
102 |
cl.user_session.set("settings", settings)
|
103 |
cl.user_session.set("first_run", False)
|
104 |
|
105 |
-
|
106 |
@cl.on_message # marks a function that should be run each time the chatbot receives a message from a user
|
107 |
async def main(message: cl.Message):
|
108 |
settings = cl.user_session.get("settings")
|
|
|
9 |
import arxiv
|
10 |
import pinecone
|
11 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
12 |
+
from langchain.embeddings.azure_openai import AzureOpenAIEmbeddings
|
13 |
+
from langchain.chat_models import ChatOpenAI, AzureChatOpenAI
|
14 |
from langchain.embeddings import CacheBackedEmbeddings
|
15 |
from langchain.storage import LocalFileStore, InMemoryStore
|
16 |
from utils.store import index_documents, search_and_index
|
17 |
from utils.chain import create_chain
|
18 |
from langchain.vectorstores import Pinecone
|
19 |
+
|
20 |
from langchain.schema.runnable import RunnableSequence
|
21 |
from langchain.schema import format_document
|
22 |
from pprint import pprint
|
23 |
from langchain_core.vectorstores import VectorStoreRetriever
|
24 |
import langchain
|
25 |
from langchain.cache import InMemoryCache
|
|
|
26 |
from langchain.memory import ConversationBufferMemory
|
|
|
27 |
|
28 |
load_dotenv()
|
29 |
YOUR_API_KEY = os.environ["PINECONE_API_KEY"]
|
|
|
42 |
}
|
43 |
|
44 |
await cl.Message(
|
45 |
+
content="Hi, I am here to help you learn about a topic, what would you like to learn about today? 😊"
|
46 |
).send()
|
47 |
|
48 |
# create an embedder through a cache interface (locally) (on start)
|
49 |
store = InMemoryStore()
|
50 |
|
51 |
+
core_embeddings_model = AzureOpenAIEmbeddings(
|
52 |
+
api_key=os.environ['AZURE_OPENAI_API_KEY'],
|
53 |
+
azure_deployment="text-embedding-ada-002",
|
54 |
+
azure_endpoint=os.environ['AZURE_OPENAI_ENDPOINT']
|
55 |
)
|
56 |
|
57 |
embedder = CacheBackedEmbeddings.from_bytes_store(
|
|
|
73 |
dimension=1536
|
74 |
)
|
75 |
index = pinecone.GRPCIndex(INDEX_NAME)
|
76 |
+
|
77 |
+
llm = AzureChatOpenAI(
|
|
|
|
|
78 |
temperature=settings['temperature'],
|
79 |
max_tokens=settings['max_tokens'],
|
80 |
+
api_key=os.environ['AZURE_OPENAI_API_KEY'],
|
81 |
+
azure_deployment="gpt-35-turbo-16k",
|
82 |
+
api_version="2023-07-01-preview",
|
83 |
streaming=True
|
84 |
)
|
85 |
|
|
|
91 |
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
|
92 |
|
93 |
# setup memory
|
|
|
94 |
memory = ConversationBufferMemory(memory_key="chat_history")
|
95 |
|
96 |
tools = {
|
|
|
103 |
cl.user_session.set("settings", settings)
|
104 |
cl.user_session.set("first_run", False)
|
105 |
|
106 |
+
|
107 |
@cl.on_message # marks a function that should be run each time the chatbot receives a message from a user
|
108 |
async def main(message: cl.Message):
|
109 |
settings = cl.user_session.get("settings")
|